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Abstract. We propose a new and efficient signature scheme that is prov-
ably secure in the plain model. The security of our scheme is based on a
discrete-logarithm-based assumption put forth by Lysyanskaya, Rivest,
Sahai, and Wolf (LRSW) who also showed that it holds for generic groups
and is independent of the decisional Diffie-Hellman assumption. We prove
security of our scheme under the LRSW assumption for groups with bi-
linear maps. We then show how our scheme can be used to construct
efficient anonymous credential systems as well as group signature and
identity escrow schemes. To this end, we provide efficient protocols that
allow one to prove in zero-knowledge the knowledge of a signature on a
committed (or encrypted) message and to obtain a signature on a com-
mitted message.

1 Introduction

Digital signatures schemes, invented by Diffie and Hellman [20], and formalized
by Goldwasser, Micali and Rivest [26], not only provide the electronic equivalent
of signing a paper document with a pen but also are an important building block
for many cryptographic protocols such as anonymous voting schemes, e-cash, and
anonymous credential schemes, to name just a few.

Signature schemes exists if and only if one-way functions exist [32,35]. How-
ever, the efficiency of these general constructions, and also the fact that these
signature schemes require the signer’s secret key to change between invocations
of the signing algorithm, makes these solutions undesirable in practice.

Using an ideal random function (this is the so-called random-oracle model),
several, much more efficient signature schemes were shown to be secure. Most
notably, those are the RSA [34], the Fiat-Shamir [21], and the Schnorr [36]
signature schemes. However, ideal random functions cannot be implemented in
the plain model [13,25], and therefore in the plain model, these signature schemes
are not provably secure.

Over the years, many researchers have come up with signature schemes that
are efficient and at the same time provably secure in the plain model. The most
efficient ones provably secure in the standard model are based on the strong RSA
assumption [23,19,22,10]. However, no scheme based on an assumption related
to the discrete logarithm assumption in the plain (as opposed to random-oracle)
model comes close to the efficiency of these schemes.



In this paper, we propose a new signature scheme that is based on an assump-
tion introduced by Lysyanskaya, Rivest, Sahai, and Wolf [30] and uses bilinear
maps. This assumption was shown to hold for generic groups [30], and be in-
dependent of the decisional Diffie-Hellman assumption. Our signature scheme’s
efficiency is comparable to the schemes mentioned above that are based on the
Strong RSA assumption.

We further extend our basic signature scheme such that it can be used as
a building block for cryptographic protocols. To this end, we provide proto-
cols to prove knowledge of a signature on a committed message and to obtain
a signature on a committed message. These protocols yield a group signature
scheme [17] or an anonymous credential system [14] (cf. [10]). That is, we ob-
tain the first efficient and secure credential system and group signature/identity
escrow schemes [28] that are based solely on discrete-logarithm-related assump-
tions. We should mention that an anonymous credential system proposed by
Verheul [38] is also only based on discrete logarithm related assumptions; how-
ever, the scheme is not proven secure. Also note that the recent scheme by
Ateniese and de Medeiros [2] requires the strong RSA assumption although no
party is required to know an RSA secret key during the operation of the system.

Note that not only are our group signature and anonymous credential schemes
interesting because they are based on a different assumption, but also be-
cause they are much more efficient than any of the existing schemes. All prior
schemes [1,9,10,2] required proofs of knowledge of representations over groups
modulo large moduli (for example, modulo an RSA modulus, whose recom-
mended length is about 2K Bits).

Recently, independently from our work, Boneh and Boyen [4] put forth a
signature scheme that is also provably secure under a discrete-logarithm-type
assumption about groups with bilinear maps. In contrast to their work, our
main goal is not just an efficient signature scheme, but a set of efficient pro-
tocols to prove knowledge of signatures and to issue signatures on committed
(secret) messages. Our end goal is higher-level applications, i.e., group signature
and anonymous credential schemes that can be constructed based solely on an
assumption related to the discrete logarithm assumption.

In another recent independent work, Boneh, Boyen, and Shacham [5] con-
struct a group signature scheme based on different discrete-logarithm-type as-
sumptions about groups with bilinear pairings. Their scheme yields itself to the
design of a signature scheme with efficient protocols as well. In §5 we describe
their scheme and its connection to our work in more detail.

Outline of the paper. In §2 we give our notation and some number-theoretic
preliminaries, including bilinear maps and the LRSW assumption. In §3, we
give our signature scheme and prove it secure. In §4 we show how our signature
yields itself to the design of an anonymous credential system: we give protocols
for obtaining a signature on a committed value, and for proving knowledge of a
signature on a committed value. In the end of that section, we show how to realize
a group signature scheme based on our new signature. Finally, in Section 5, we
show that the scheme of Boneh, Boeyn and Shacham can be extended so that



a signature scheme with efficient protocols, similar to the one we describe in
Sections 3 and 4 can be obtained based on their assumptions as well.

2 Preliminaries

We use notation introduced by Micali [31] (also called the GMR notation), and
also notation introduced by Camenisch and Stadler [12]. Here we review it briefly;
the complete description can be found in the full version [CL04] of this paper.

If A is an algorithm, and b be a Boolean function, then by (y + A(z) : b(y)),
we denote the event that b(y) = 1 after y was generated by running A on input z.
By A©(-), we denote a Turing machine that makes queries to an oracle O. By
Q = Q(A°(z)) « A9(x) we denote the contents of the query tape once A
terminates, with oracle O and input z.

A function v(k) is negligible if for every positive polynomial p(-) and for
sufficiently large k, v(k) < ;5.

Camenisch and Stadler[12] introduced notation for various proofs of knowl-
edge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For instance,

PK{(e,8,7) 1y = g°h° A §=3"h" A (u<a<w)}

denotes a “zero-knowledge Proof of Knowledge of integers a, 3, and v such that
y = g®h® and § = §G*hY holds, where u < a < v,” where y, 9,h, 9,9, and h are
elements of some groups G = (g) = (h) and G = (§) = (h). The convention
is that Greek letters denote quantities the knowledge of which is being proved,
while all other parameters are known to the verifier. We will sometimes apply
the Fiat-Shamir heuristic to turn such a proof into a signature on a message m,
which we will denote as, e.g., SPK{(a) : y = g*}(m).
We also use the standard definition of a digital signature scheme [26].

2.1 Number-Theoretic Preliminaries

We now describe some number-theoretic preliminaries. Suppose that we have
a setup algorithm Setup that, on input the security parameter 1%, outputs the
setup for G = (g) and G = (g), two groups of prime order ¢ = @(2*) that have a
non-degenerate efficiently computable bilinear map e. More precisely: We assume
that associated with each group element, there is a unique binary string that
represents it. (For example, if G = Zj, then an element of G can be represented
as an integer between 1 and p — 1.) Following prior work (for example, Boneh
and Franklin [6]), e is a function, e : G x G — G, such that

— (Bilinear) For all P,Q € G, for all a,b € Z, e(P*, Q%) = e(P, Q).
— (Non-degenerate) There exists some P, ) € G such that e(P, Q) # 1, where
1 is the identity of G.

— (Efficient) There exists an efficient algorithm for computing e.



We write: (¢, G,G,g,g,e) « Setup(1¥). It is easy to see, from the first two
properties, and from the fact that G and G are both of the same prime order g,
that whenever g is a generator of G, g = e(g, g) is a generator of G.

Such groups, based on the Weil and Tate pairings over elliptic curves (see
Silverman [37]), have been extensively relied upon in cryptographic literature
over the past few years (cf. [27,6,7,24] to name a few results).

Further, we make the following assumption about the groups G and G.

Assumption 21 (LRSW Assumption) Suppose that G = (g) is a group cho-
sen by the setup algorithm Setup. Let XY € G, X = ¢°, Y = g¥. Let Ox,v (")
be an oracle that, on input a value m € Z,, outputs a triple A = (a,a?,a®+™V)
for a randomly chosen a. Then for all probabilistic polynomial time adversaries
A”, v(k) defined as follows is a negligible function:

Pr((q, G, G, g,8,€) « Setup(1*); 2 « Zgy  Zg; X = ¢%;Y = g¥;
(m,a,b,c) + A%%Y (¢, G,G,g,g,e,X,Y) : me¢Q N meZyA
Am#OAN a€ GA b=a’ A c=a"T"] =v(k) ,

where Q) is the set of queries that A made to Ox y ().

This assumption was introduced by Lysyanskaya et al. [30], and considered
for groups that are not known to admit an efficient bilinear map. It was also
shown, in the same paper, that this assumption holds for generic groups. It is
not hard to see that the proof carries over to generic groups G and G with a
bilinear map between them.

3 Three Signature Schemes

First, we present a simple signature scheme (Scheme A) and prove it secure under
the LRSW assumption. Then, we modify this scheme to get signature schemes
that lend themselves more easily to the design of efficient protocols for issuing
a signature on a committed value and proving knowledge of a signature on a
committed value. The first generalization will allow to sign such that the signa-
ture produced is independent of the message (Scheme B), which we generalize
further into a scheme that allows to sign blocks of messages (Scheme C).

Schemes A and B are, in fact, special cases of Scheme C. So we really propose
just one new signature scheme, namely Scheme C. Schemes A and B are just
steps that simplify our presentation by making it more modular.

3.1 Scheme A: A Simple Signature Scheme

The signature scheme consists of the following algorithms:

Key generation. The key generation algorithm runs the Setup algorithm in
order to generate (¢, G, G, g,8,e). It then chooses z <+ Z, and y < Z,, and
sets sk = (z,y), pk = (¢, G, G, g9,8,¢,X,Y), where X = ¢* and Y = g¢¥.



Signature. On input message m, secret key sk = (x,y), and public key pk =
(¢, G,G,g,8,6,X,Y), choose a random a € G, and output the signature
o = (a,a¥,a® ™M),

Verification. On input pk = (¢, G, G, g,8,¢e, X,Y), message m, and purported
signature o = (a, b, ¢), check that the following verification equations hold.

e(a,Y) =e(g,b) and e(X,a)-e(X,b)™ =e(g,c) . (1)

Theorem 1. Signature Scheme A described above is correct and secure under
the LRSW assumption.

Proof. We first show correctness. The first verification equation holds as
e(a,Y) = e(a,g9)Y = e(g,a)? = e(g,b) and the second one holds because
G(X, a) : e(X: b)m = e(ga a)av : e(gu a)mwy = e(ga a)w—i—mwy = e(ga C)'

We now show security. Without loss of generality, let g = e(g, g).

Consider the adversary interacting with the signer and outputting a valid
signature o on some message m that he did not query for. It is clear that the
signer acts the same way as the oracle Ox,y defined in the LRSW assumption.
Therefore, in order to prove security, we must show that the forgery o = (a, b, ¢)
that passes the verification equations, must be of the form (*) b = a¥ and (**)
c = aw—i—mmy.

Let a = g%, b= g®, ¢ = ¢g7. So, we wish to show that /a = y, and that
v/o =z + may.

From the first verification equation and the bilinearity of e, we get that

g =e(g,9)* =e(a,Y) =e(g,b) = e(g,9)° =g° .

As g is a generator of G, we can take the logarithm base g on both sides, and
obtain ay = 8 mod ¢, which gives us (*) as desired.

From the second verification equation, using the above, and, again, the fact
that g is a generator:

G(X, a) : 6(X, b)m = e(ga C)
e(g,9)"e(g, 9™ = e(g, 9)"
za+mzf = alz+mzay) =7 .

3.2 Scheme B Where Signature Is Independent of the Message

For constructing anonymous credentials, we need a signature scheme where the
signature itself is distributed in a way that is information-theoretically indepen-
dent of the message m being signed. In essence, what is being signed should be
an information-theoretically secure commitment (Pedersen commitment) of the
message. Thus, we modify Scheme A and obtain Scheme B as follows:

Key generation. Run the Setup algorithm to generate (¢, G, G, g, g, ). Choose
XLy ZLg, 2 Ly Let X =g*, Y = g¥ and Z = ¢g°. Set sk = (z,y, 2),
vk =(¢,G,G,9,8,¢6,X,Y, 7).



Signature. On input message (m,r), secret key sk = (z,vy,2), and public key
pk = (q7 G7G7g7g7e7X7Y7Z) do:
— Choose a random a + G.
— Let A =a”.
— Let b=a¥, B = AY.
— Let ¢ = a®+2ym Ay,
Output o = (a, 4,b, B, ¢).
Verification. On input pk = (¢, G, G, 9,8,¢,X,Y, Z), message (m,r), and pur-
ported signature o = (a, 4, b, B, ¢), check the following:
1. A was formed correctly: e(a, Z) = e(g, A).
2. b and B were formed correctly: e(a,Y) = e(g,b) and e(A4,Y) = e(yg, B).
3. ¢ was formed correctly: e(X,a) - e(X,b)™ - e(X, B)" = e(g,c).

Note that the values (¢™Z",a, A,b, B, ¢) are information-theoretically inde-
pendent of m if r is chosen randomly. This will become crucial when using this
signature scheme in the context of an anonymous credential system.

Theorem 2. Signature Scheme B described above is correct and secure under
the LRSW assumption.

The full proof of this theorem is found in the full version [CL04] of this paper.
Here we give a sketch. Correctness follows by inspection. To show security, we
consider two types of forgery. Type 1 forgery is on some message (m,r) such
that for all previously queried (m;,r;) we have g™ Z" # g™i Z". Type 2 forgery
is when this is not the case.

The existence of Type-1 forger contradicts the LRSW assumption by reduc-
tion from Signature Scheme A. On input a public key pk = (¢, G, G, g,8,¢, X,Y)
for Scheme A, our reduction forms a public key pk' = (¢, G,G, g,g8,e, X,Y, Z)
for Scheme B by choosing z < Z, and setting Z = g¢*. It then runs the forger
on input pk’, and answers signature queries of the form (m;,r;) by transforming
them into queries m} = m; + r;z mod ¢ for the signature oracle for Scheme A.
It is easy to see that a Type 1 forgery on (m,r) constitutes a successful forgery
for the message m' = m + rz in Scheme A.

The existence of Type-2 forger contradicts the discrete logarithm assump-
tion (and therefore the LRSW assumption). The reduction takes as input
(¢, G,G,g,8,e,Z), and sets up the public key for the signature scheme by choos-
ing X and Y. It then runs the forger, answers all the signature queries (since it
generated X and Y itself) and obtains a Type-2 forgery, namely (m,r), (m;, ;)
such that ¢™Z" = g™ Z" for some i. This immediately gives the discrete loga-
rithm of Z to the base g.

3.3 Scheme C for Blocks of Messages

Scheme B allows us to generate a signature on m in such a way that the signature
itself reveals no information about m. Namely, one can choose a random r and
sign (m, r) using Scheme B. In general, however, there is no reason that we should
limit ourselves to pairs (m,r) when signing. In fact, the construction of Scheme



B can be generalized to obtain Scheme C which can sign tuples (m(®), ... m(®),
i.e., blocks of messages.
Scheme C consists of the following algorithms:

Key generation. Run the Setup algorithm to generate (¢, G, G, g, g, €). Choose
T Zg,y <+ Lg,andfor1 <i < ¥,z < Zg Let X =g¢”, Y =gYand,for1 <
1 < 67 Zi= g*. Set sk = ($7y7z17 .. '7Zl)7 pk = (q7 G7G7g7g7e7X7Y7 {Z’L})
Signature. On input message (m(®,m®M) ... m®) secret key sk =
(x,y,21,--.,2¢), and public key pk = (¢, G, G, 9,8,e,X,Y,{Z;}) do:
— Choose a random a + G.
— Let A; =a* for 1 <i <UL
— Let b= Cly, Bl = (Az)y
— Let ¢ = q=+avm® [E_ ATv™
Output o = (a,{A4:},b,{B;},c).

©)]

Verification. On input pk = (¢,G,G,g,8,6,X,Y,{Z;}), message
(m©@, ... m®)), and purported signature o = (a,{4;},b, {B;},c), check the
following;:

1. {A;} were formed correctly: e(a, Z;) = e(g, 4;).

2. b and {B;} were formed correctly: e(a,Y) = e(g,b) and e(4;,Y) =
e(gaBz) )

3. ¢ was formed correctly: e(X, a) -e(X, b)m(o) -Hle e(X, Bi)m(l) =e(g,c0).

The proof that this scheme is secure and correct is deferred to Corollary 1.

4 Anonymous Credential System and Group Signature
Scheme

Following Camenisch and Lysyanskaya [10,29], in order to construct an anony-
mous credential system, it is sufficient to exhibit a commitment scheme, a sig-
nature scheme, and efficient protocols for (1) proving equality of two committed
values; (2) getting a signature on a committed value (without revealing this value
to the signer); and (3) proving knowledge of a signature on a committed value.
We provide all these tools in this section.

Constructing a group signatures scheme or identity escrow scheme addition-
ally requires an encryption scheme that is secure against adaptively chosen ci-
phertext attacks and a protocol that a committed value is contained in a cipher-
text (cf. [12,3,11]). Camenisch and Shoup provide an encryption scheme and
such a protocol [11]. However, in our case we could also use the Cramer-Shoup
encryption scheme [18], provided that the order of the group over which encryp-
tion is carried out is the same as the order of the group over which our signature
scheme is constructed. This will allow for a more efficient proof that a ciphertext
contains information to identify a group member and thus a more efficient group
signatures/identity escrow scheme. We will describe the details of this in §4.4.

The reason that our new signature schemes are particularly suitable for the
credential scheme application, is the fact that, given one signature on a given



message, it is easy to generate another one. Consider Signature Scheme A. From
a signature o = (a,b,c) on message m, it is very easy to compute a different
signature o = (&, b, ¢) on the same message m: just choose a random r € Z, and
let @ = a”, b=b", & = ¢". This alone is, of course, not sufficient, but this already

shows the way in which the pieces of our credential scheme will fall into place.

4.1 The Relevant Commitment Scheme

Recall the Pedersen commitment scheme [33]: given a group G of prime order
g with generators g and h, a commitment to x € Z, is formed by choosing
a random r < Zg4 and setting the commitment C' = g®h". This commitment
scheme is information-theoretically hiding, and is binding under the discrete
logarithm assumption, which is implied by the LRSW assumption. Moreover,
there exist in the literature efficient protocols for proving knowledge and equality
of committed values (see, for example, [16,36,8,15]).

4.2 Obtaining a Signature on a Committed Value

When Information-Theoretic Hiding Is not Needed. Consider the signing algo-
rithm for Scheme A. Note that, if the input to the signer is ¢ instead of m,
the algorithm will still work: on input M = ¢™, output a = ¢", b = a¥, and
c=a*M"™Y = g®T™*¥, To maintain security of the signature scheme, however,
the user must prove knowledge of m to the signer.

As we will discuss in more detail in §4.4, this leads to a natural application
to constructing group signatures: in order to join a group, a new member will
choose a secret m, give g™ to the group manager, prove knowledge of m, and
obtain the membership certificate (a, b, ¢) formed as above.

However, note here that the input to the signer, the value g™, does not
unconditionally hide the value m. Thus, if the user wishes to become a member
in more than one group using the same secret m (as is the case if we want to build
an anonymous credential system), the two group managers can discover that they
are talking to the same user. This is easy to see if both group managers use the
same generator g for G, because in that case, the user will give ¢ to both of
them. But this is true even if one group manager uses g, while the other uses §:
recall that in groups with bilinear pairings, the decisional Diffie-Hellman problem
is easy, and so g™ and §™ can be correlated: e(¢g™, g) = e(g, §)™ = e(g,g™).

This is why we need Schemes B and C instead of Scheme A. However, we
note that for group signatures, Scheme A is sufficient. In the sequel, we will give
the description of the protocol for Scheme C, together with a proof of security.
Because Scheme A is a special case of Scheme C (in Scheme A, £ = 0), the
security of the protocols for A is implied by that for C.

Signing an Information-Theoretically Hidden Message. Signature Schemes B

and C are ideally suited for obtaining a signature on a committed value.
Consider Signature Scheme B. Note that to generate a valid signature, the

signer need not know (m,r). Instead, it is sufficient that the signer know M =



g™Z". The values (a, A,b, B) are not a function of (m,r) — so the signer need
not know (m,r) to generate them. Suppose that the signer generates them as
follows: choose a < Zg4, and let a = ¢g*. Choose A, b, and B as prescribed
by the signing algorithm. Finally, the signer can compute ¢ = a®*T2¥™mAZY" a5
c = a*M**¥. This will be correct, because:

c=a"M*¥
= a* (gmzr)awy
=a"(a™A")™ because by construction, A = ¢** = Z¢
— aa:—i—a:ymAwyr

More generally, in Signature Scheme C, all the signer needs is the value M =
gm(o) Hle Zim(i). He can then compute (a = g%, {4;},b,{B;}) as prescribed,
and let ¢ = a®* M *®Y as above.

We do not know how to prove such a method for signing secure under the
LRSW assumption: the difference from the usual method is that here, the ad-
versary may win by asking a signature query for M for which he does not know
the representation in terms of ¢ and Z.

Thus, in order to obtain a signature on a committed value, the protocol needs
to be amended by having a recipient of the signature prove that he knows the
representation of M in bases g and Z.

Let us give the protocol in detail now. We give the protocol for Signature
Scheme C, the ones for Signature Schemes A and B follow from this as they are
special cases of Signature Scheme C.

Obtaining a Signature C on a Committed Value. Suppose that M =
gm(o) Hle Zz-m(i) is a commitment to a set of messages (m(®,...,m() whose
signature the user wishes to obtain. Then the user and the signer run the fol-
lowing protocol:

Common Input. The public key pk = (q, G, G, g,8,¢,X,Y,{Z;}), and a com-
mitment M. '

User’s Input. Values m(®, ... m( such that M = gm(o) Hle Zz-mm.

Signer’s Input. Signing key sk = (z,y, {2:}).

Protocol. First, the user gives a zero-knowledge proof of knowledge of the open-
ing of the commitment:

4
(0) (3)
PE{(p®,...,u): M =g [[ 20}
i=1

Next, the signer computes o = (a,{A;},b,{B;},c) as described above,
namely:
—a+Zy a=g°“.
—For1 <i<U/¥ let A; = a®. Then set b = a¥, and for 1 < i </, let
B; = AY.



— ¢c=a*Moxy,
The user outputs the signature o.

Theorem 3. The protocol above is a secure two-party computation of a signa-
ture on a discrete-logarithm representation of M under the signer’s public key.

Proof. (Sketch) From the signer’s point of view, this protocol is as secure as
when the user submits his signature queries in the clear. This is because of the
proof of knowledge: there exists an extractor that can discover the value of the
message being signed, and ask it of the signer in the clear.

From the user’s point of view, as the only place where the user’s secret input
(m©, ... ,m®) is used is the zero-knowledge proof of knowledge of these values,
the only thing that the signer finds out about the message (m(®,...,m®), is
the input value M. Note that if m(® is distributed uniformly at random, then
M information-theoretically hides the values (m(©®), ... K m¢=1).

4.3 Proving Knowledge of a Signature

We first present a protocol to prove knowledge of a signature that works for
Scheme A. We then explain why the protocol does not generalize to Scheme B
(and thus also Scheme C), show how Scheme C needs to be extended to fix this
problem, and obtain Scheme D. We then give a proof of security of Scheme D and
a zero-knowledge protocol for proving knowledge of a signature under Scheme
D. We note that the protocol to sign a committed (secret) message also works
for Scheme D.

The following protocol is a zero-knowledge proof of knowledge of a signed
message for Scheme A.

Common input. The public key pk = (¢, G, G, g,8,¢, X,Y).
Prover’s input. The message m € Z, and signature o = (a,b,¢).
Protocol. The prover does the following:
1. Compute a blinded version of his signature o: Choose random r,7' € Z,,
and blind the signature to form & := (a™ ,b™ ,¢" ") = (@, b,é") = (a,b, &).
Send (@, b, &) to the verifier.
2. Let the vz, vy, and v, be as follows:

vw:e(X,d) , V:cy:e(X:I;) , Vs:e(gaé) -

The Prover and Verifier compute these values (locally) and then carry
out the following zero-knowledge proof protocol:
PE{(u,p) : v§ = vaVh,

The Verifier accepts if it accepts the proof above and e(a,Y) = e(g,b).

Theorem 4. The protocol above is a zero knowledge proof of knowledge of a
signature o on a message m under Signature Scheme A.



Proof. First, we prove the zero-knowledge property. The values that the verifier
receives from the prover in Step 1 are independent of the actual signature: @ and b
are just random values satlsfylng e(a,Y) = e(g,b), and ¢ is random in G because
¢ =& for a randomly chosen 7'. Therefore, consider the followmg simulator S:
Choose random r and 7/, and set @ = ¢”, b = Y", é = ¢" . Then (a,b,¢) is
distributed correctly, and so Step 1 is simulated correctly. Then, because in
Step 2, the Prover and Verifier execute a zero-knowledge proof, it follows that
there exists a simulator S’ for this step; just run S’. It is easy to see that S
constructed this way is the zero-knowledge simulator for this protocol.

Next, let us prove that this protocol is a proof of knowledge. That is to say, we
must exhibit a knowledge extractor algorithm E that, given access to a Prover
such that the Verifier’s acceptance probability is non-negligible, outputs a value
(m, o), such that o is a valid signature. Suppose that we are given such a prover.
The extractor proceeds as follows: first, it runs the extractor for the proof of
knowledge protocol of Step 2. As a result, it obtains the values r,m € Z, such
that vi = vgvg,. Then:

T m
Vg = VgV,

e(9,6)" = e(X,a)e(X, )™
e(g,¢") = e(X,a)e(X,b)™

And therefore the triple o = (&, b, é") satisfies the verification equation (1) and
hence is a signature on the message m, so our extractor outputs (m, o).

Let us now try to adapt this protocol for Signature Scheme C. There is one
subtlety that arises here: The zero-knowledge simulator needs to be able to come
up with something that looks like a blinded signature (let us call it simulated
signature), even though the simulator is not given any signature. In Signature
Scheme A this turned out not to be a problem: the simulator simply picked a
random r and set @ = g", and b = Y. Here, this is not going to work, because,
in addition to @ and b, the simulated signature needs to include the values {4 }
and {B }. Now, forming A; is not a problem: A; = Z7. But how do we compute

Ay = ¢g"*¥ without knowing z; or y?

To that end, we may augment the public key for signature scheme C to
include a signature on some dummy message, so that the simulator will be given
some valid signature that includes the correctly formed tuple (a,{A4;},b,{B;}),
and then, in order to obtain the simulated signature, the simulator will pick a
random r, and let @ = a”, b=b", A; = A7, and B; = B;.

An even better solution, in terms of reducing the size of the public key, is
actually to include the values W; = Y'* in the public key, instead of the signature
on the dummy message. It is easy to see that this has no effect on the security
of the signature scheme.

Let us now give this new, augmented signature scheme, and prove it secure.

Signature Scheme D. This signature scheme is the same as Signature Scheme
C, except that the public key also includes the values {W; = Y*i}.



Key generation. Run the Setup algorithm to generate (¢, G, G, g, g, €). Choose
X < Zgy < Zg,and for 1 < i < 0, 25 <+ Zg Let X = g%, YV = ¢
and, for 1 < i < ¢, Z; = g% and W; = Y*. Set sk = (x,y,21,---,20),
vk = (g, G, G, g9,8,€,X,Y,{Z;},{W;}).

The signature and verification algorithm are identical to the ones of Scheme C.

Theorem 5. Signature Scheme D is correct and secure under the LRSW as-
sumption.

The detailed proof of this theorem is given in the full version of this paper.
The main idea of the proof of security is that the proof for Scheme B generalizes
to the case when we have several Z;’s.

As a forger for Scheme C is also a forger for Scheme D, we have:

Corollary 1. Signature Scheme C is correct and secure under the LRSW as-
sumption.

The full description of the protocol and proof of security follow.

Common input. The public key pk = (¢, G, G, 9,8,e, X, Y, {Z;}, {W;}).
Prover’s input. The block of messages (m!®,... m(¥) and signature o =
(aa {Al}a b7 {Bl}a C).
Protocol. The prover does the following:
1. Compute a blinded version of his signature o: Choose random r, 7' € Z,.

Form & = (@, {A;},b, {B;},¢) as follows:
G=a", b="b" and ¢=¢
fli:Ag and Bz-:Bir for1<i</{

Further, blind ¢ to obtain a value ¢ that it is distributed independently
of everything else: ¢ = &'
Send (a,{Ai},b,{B;},¢) to the verifier.

2. Let vg, Vay, V(gy,i), ¢ = 1,...,£, and vs be as follows:

v, =e(X,a) , Vay = e(X, I;) > V(wy,i) =e(X, Bz) , Vs =e(g,¢)

The Prover and Verifier compute these values (locally) and then carry
out the following zero-knowledge proof protocol:

l
(0) ()
PE{(n®, ..., 19, p) : (v6)? = Va(vay)*” T[Viwy.)" "}

i=1

The Verifier accepts if it accepts the proof above and (a) {fl,} were
formed correctly: e(a, Z;) = e(g,4;); and (b) b and {B;} were formed
correctly: e(a,Y) = e(g,b) and e(A;,Y) = e(g, B;).
Theorem 6. The protocol above is a zero knowledge proof of knowledge of a
signature o on a block of messages (m(o), .. .,m(e)) under Signature Scheme D.

The proof of this theorem follows the proof of Theorem 4 and is provided in the
full version of this paper.



4.4 An Efficient Group Signature Scheme Secure under the
LSWR-Assumption

We now present the first efficient group signature (and identity escrow) scheme
whose security relies solely on assumptions related to the discrete logarithm
problem (in the random oracle model). In contrast, all previous efficient schemes
rely on the strong RSA assumption plus the decisional Diffie-Hellman assump-
tion.

Recall that a group signatures scheme allows members of a group to sign
anonymously on the group’s behalf. In case of disputes, there exists a trusted
third party called revocation manager who will be able to open a signature and
reveal the identity of the signer. A group signature scheme consists of five proce-
dures: (1) a key generation procedure that produces the public key of the group
(and also some keys for the group and revocation manager), (2) a join protocol
for a member to get admitted by the group manager, (3) a sign algorithm for an
admitted member to sign a message, (4) a verification algorithm to check group
signatures for validity with respect to the group’s public key, and (5) an opening
algorithm that allows the revocation manager to reveal the identity of a signer.
A group signature scheme is secure if only the revocation manager can reveal
the identity of the signer (anonymity) and if the revocation manager can do this
for all valid signatures (traceability) [3].

Our construction follows the approach introduced by Camenisch and
Stadler [12]: A member gets a certificate on a membership public key from the
group manager when she joins the group. When she wants to sign on behalf of
the group, she encrypts her membership public key under the encryption key of
the party who will later be able to open group signatures (revocation manager)
and then proves that she possesses a certificate on the encrypted membership
public key and that she knows its secret key. To make this proof a signature,
one usually applies the Fiat-Shamir heuristic to this proof [21].

The public key of the group manager is the public key of our Scheme A, i.e.,
pky = (¢, G, G, 9,8,¢,X,Y) and his secret key is z = log, X and y = log, Y.
The public key of the revocation manager is the public key of the Cramer-Shoup
encryption scheme [18] in the group G = (g), i.e., pkp = (h,y1,¥2,y3), with
her G, y1 =g“th*2, y, = g*h®, and y3 = g5, where z1,...,75 Er Z, are the
revocation manager’s secret key.! Finally, let () : {0,1}* — Z, be a collision
resistant hash function (modeled as a random oracle in the proof of security).

The join protocol is as follows. The future group member chooses her mem-
bership secret key k €g Zg, sets P = g*, sends P authentically to the group
manager, and proves to the group manager the knowledge of log, P. The group
manager replies with a Scheme A signature (a,b,c) on the message committed
by P, i.e., computes a = g", b = a¥, and ¢ = a® P™Y, where r € Z, (cf. §4.2).

! The Cramer-Shoup cryptosystem is secure under the decisional Diffie-Hellman
(DDH) assumption. Therefore, we cannot use it over group G, because the exis-
tence of a bilinear map implies that the DDH problem is tractable. Thus, we use the
CS cryptosystem in group G instead.



The group manager stores P = e(P, g) together with P and the identity of the
new group member.

To sign a message m on behalf of the group, the user computes P = gF =
e(P, g) and a blinded version of the certificate by choosing random r,r' € Z, and
computing & := (a” ,b" ,¢" ") = (@, b,&) = (a,b, ). Next, she encrypts P under
the revocation manager’s public key pkg, i.e., she chooses u €r Z,, computes
¢ = g% cy = h* c3 =y¥P, and ¢4 = ygy;‘“(“””””). Then she computes the
following proof-signature (cf. §2):

EZSPK{(H:P:”)ZVQ):Vngy ANcr=g" A cg=h"A

(01||C2||C3))v}(m) ,

A cs=yig" A ¢y = (yays
where v, = e(X,a), vzy = e(X, b), and v, = e(g,¢). A group signature consists
of ((@,b,8&),(c1,Ca,¢3,¢4), %) and is valid if X is a valid SPK as defined above
and if e(@,Y) = e(g, b) holds.

To open such a group signature, the revocation managers needs to decrypt
(c1,C2,C3,¢4) to obtain P which identifies the group member.

It is not hard to see that, in the random oracle model, this is a secure group
signatures scheme under the LRSW and the decisional Diffie-Hellman assump-
tion in G. Let us give a proof sketch for security under the Bellare et al. [3]
definition. If an adversary can break anonymity, then one can break the encryp-
tion scheme as (&, b, ¢) are random values and X is derived from an honest-verifier
zero-knowledge proof. If an adversary can produce a signature that cannot be
opened, i.e., linked to a registered member by the revocation manager, then one
can use rewinding to extract a forged signature and break the signature scheme
(cf. analysis of the protocol to prove knowledge of a signatures in §4.3). If used as
an identity escrow scheme (i.e., if X' is not a proof-signature but a real protocol
between a group member and a verifier), the security proof need not to assume
random oracles.

The scheme just described can be extended in several ways. For instance,
we could use Scheme D instead of Scheme A and include the user’s identity
id directly into her membership key P, e.g., P = g*Zi%. That is, in the join
protocol, the user would send P’ = g* (and prove knowledge of log , P) and the
group manager would then compute P as to ensure that indeed id is contained in
P. Then, instead of encrypting P, one could use the Camenisch-Shoup encryption
scheme [11] to directly encrypt the identity as one of the discrete logarithms the
knowledge of which is proven when proving knowledge of a signature.

5 Constructions Based on the BBS Group Signature

Recently and independently of this work, Boneh, Boyen and Shacham [5] pre-
sented a group signature scheme secure under the strong Diffie-Hellman and the
Linear assumptions. They showed that, under these assumptions in groups with
bilinear pairings, it is hard, on input (g1,92 = g{) to sample tuples of the form



(A, z) where A = gi/ (v+2) (in other words, A7t = g;), even given a polynomial
number of such samples. In their group signature scheme, such a tuple (4, z) is a
user’s group membership certificate, while (g1, g2) is the public key of the group.
At the heart of their construction are (1) a zero-knowledge proof of knowledge
of such a tuple; and (2) a scheme for encrypting z. They prove the resulting
construction secure under a slightly weaker variant of the Bellare, Micciancio,
and Warinschi [3] definition of security.

Boneh, Boyen, and Shacham also modify their main group signature scheme
to achieve exculpability, as follows. The public key of the group is augmented
by an additional value h; it is now (g1, g2, h). The membership certificate of a
group member is (4, z,y) such that A7*®hY = g;. This membership certificate
is created via a protocol in which the group manager only learns the value
hY, but not the value y. The unforgeability of membership certificates in this
modified scheme can be derived from that of their main scheme. They achieve
exculpability because a proof of knowledge of a membership certificate requires
the knowledge of the value y.

Note that this latter signature scheme gives rise to the equivalent of our
Signature Scheme A, but under a different assumption. Namely, the membership
certificate (A, z,y) is a signature on the value y. Just as in our Scheme A, a group
member obtains his group membership certificate in such a way that the group
manager learns the value h¥ but not the value y itself.

Not surprisingly, this signature scheme can be extended to the equivalent of
our Schemes B and C using techniques similar to the ones described above. As
a result, we can obtain signature schemes with efficient protocols based on the
BBS signature. Let us give a sketch for the equivalent for Scheme C. A public key
would be (g1, 92, ho, b1, ..., he). A signature on a block of messages (mq, . .., my)
consists of values (4, z) such that A7+* Hf:o h;". In order to obtain a signature
on a committed block of messages, a user will have to supply the signer with
the value Y = Hf:o hi**, and prove knowledge of its representation in the bases
(ho, - .., he). If mg is chosen at random, then Y information-theoretically hides
(ma,...,myg). The signer will then generate the signature. A proof of knowledge
of a signature on a committed value can be obtained by appropriate modifications
to the BBS group signature protocol.
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