
Tesseract: Real-Time Cryptocurrency Exchange Using
Trusted Hardware

Iddo Bentov

Cornell Tech

Yan Ji

Cornell Tech

Fan Zhang

Cornell Tech

Lorenz Breidenbach

ETH Zürich and Cornell Tech

Philip Daian

Cornell Tech

Ari Juels

Cornell Tech

ABSTRACT
We propose Tesseract, a secure real-time cryptocurrency exchange

service. Existing centralized exchange designs are vulnerable to

theft of funds, while decentralized exchanges cannot offer real-time

cross-chain trades. All currently deployed exchanges are also vul-

nerable to frontrunning attacks. Tesseract overcomes these flaws

and achieves a best-of-both-worlds design by using a trusted exe-

cution environment. The task of committing the recent trade data

to independent cryptocurrency systems presents an all-or-nothing

fairness problem, to which we present ideal theoretical solutions,

as well as practical solutions. Tesseract supports not only real-time

cross-chain cryptocurrency trades, but also secure tokenization of

assets pegged to cryptocurrencies. For instance, Tesseract-tokenized

bitcoins can circulate on the Ethereum blockchain for use in smart

contracts. We provide a demo implementation of Tesseract that

supports Bitcoin, Ethereum, and similar cryptocurrencies.

KEYWORDS
Cryptocurrency Exchanges; Frontrunning; Trusted Hardware

ACM Reference Format:
Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari

Juels. 2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted

Hardware. In 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’19), November 11–15, 2019, London, United Kingdom.
ACM,NewYork, NY, USA, 19 pages. https://doi.org/10.1145/3319535.3363221

1 INTRODUCTION
The rise of Bitcoin [81] has spawned many hundreds of other cryp-

tocurrencies as well as application-specific units of value known as

crypto “tokens.” This diverse ecosystem of assets has in turn led to

a large and dynamic array of cryptocurrency exchanges, platforms

that allow users to trade different cryptocurrencies against one

another and/or for fiat currencies. At the time of writing, the ag-

gregate daily trading volume of cryptocurrency exchanges exceeds

$10 billion.

Unfortunately, cryptocurrency exchanges suffer from a variety

of security problems. Currently, the most popular exchanges are

centralized, meaning that they hold traders’ assets while trades

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3363221

are executed. Such exchanges support real-time trading of various

cryptocurrencies and fiat currencies. They are vulnerable, however,

to theft of traders’ funds (cf. Appendix A.1). In a number of high-

profile incidents, funds have been stolen when exchanges were

breached or other forms of malfeasance took place [21, 46, 67, 76].

Permissionless blockchains, however, are designed specifically to

eliminate trust assumptions between transacting parties by avoid-

ing centralization. A trust-free cryptocurrency exchange can be

realized for transactions across such blockchains in the form of

atomic intra-chain or cross-chain swaps (ACCSs) [31, 59], transac-

tions that exchange cryptocurrencies between pairs of users in a

fair, all-or-nothing manner. ACCSs, though, require users to wait

many minutes (in fact, often hours) for a trade to execute. Addition-

ally, atomic swaps in general aren’t sufficient to realize an exchange:

a mechanism for matching orders or otherwise performing price

discovery is also necessary. Since ACCSs serve as a useful reference

point, we elaborate on the concept and its limitations in Appendix B.

The systemic risk of theft in centralized exchanges has led to the

rising popularity of decentralized exchanges such as EtherDelta [92],
0x [107], and Kyber Network [70]. These systems hold traders’ funds

and settle transactions in smart contracts, eliminating the risk of

theft in centralized exchanges. Unfortunately, they have other draw-

backs. Their on-chain settlement means that they cannot support

real-time trading. Moreover, while their use of smart contracts

conveys an appearance of trustworthiness, they are vulnerable to

various frontrunning attacks by miners and other users [40].

Achieving the best of both worlds has been a standing challenge,

but a seemingly elusive one. An ideal cryptocurrency exchange

would be real-time like a centralized exchange, meaning that par-

ticipants can respond to price fluctuations and alter their positions

with low latency. It would support even traders that utilize auto-

mated programs for high frequency trading and arbitrage (cf. [22]),

who may wish to modify their positions in fractions of a second.

At the same time, such an exchange would be trust-free, protecting
against theft in the way that decentralized exchanges do, but also

eliminating frontrunning attacks that exploit blockchain latencies.

In this work, we present Tesseract, a cryptocurrency exchange

that achieves this ideal set of properties. Tesseract is real time.
Traders can rapidly observe the alterations in the buy (a.k.a. “bid”)

and sell (a.k.a. “ask”) orders on the exchange, as well as external

events (e.g., [112]), then modify their trading positions in millisec-

onds. By performing fast price discovery, they can drive price con-

vergence so that the gap (a.k.a. “spread”) between bids and asks

is small, leading to efficient markets like those in major financial

systems. Tesseract also prevents theft of users’ funds by exchange

operators and hackers as well as a variety of frontrunning attacks

present in centralized and decentralized exchanges.

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1521

https://doi.org/10.1145/3319535.3363221
https://doi.org/10.1145/3319535.3363221

Tesseract supports cross-chain trading in which assets are ex-

changed across distinct blockchains. Trades within a single block-

chain, e.g., exchange of tokens and Ether within Ethereum, can also

be important (cf. [36, 37, 88, 93]).While this use case can be achieved

at least in part using smart contracts, a significantly simplified vari-

ant of Tesseract can offer the added benefit of real-time trading,

which smart contracts cannot support. Tesseract also supports a

tokenization scheme that allows pegged tokens to circulate across

blockchains, without relying on a human element for security (see

Appendix E).

Tesseract relies on a trusted execution environment (TEE, cf. [87,

115]). This technology allows applications to execute within a pro-

tected environment called an enclave, that ensures confidentiality
and software integrity. It enables Tesseract to behave like a trusted

third party, controlling funds without exposing them to theft while

preventing frontrunning by the exchange operator. Our security

and trust assumptions are quite conservative, cf. Section 2.1.

Our reference implementation is built using SGX, which provides

a TEE via an instruction-set architecture extension in recent-model

Intel CPUs [14, 60, 61, 75].While side-channel attackss [110] on SGX

have been demonstrated, prominently Foreshadow [106] (that was

later patched [39]), TEE technologies evolve as well. In particular,

the Keystone project [62] is developing an open-source TEE.

The main challenge in the design of Tesseract is dealing with

powerful network adversaries. Such adversaries can perform an

eclipse attack in which an exchange is presented with fake block-

chain data. We show how to address this problem by checkpointing

trustworthy blocks within the Tesseract application and having

it monitor the cumulative difficulty of newly furnished blocks. A

network adversary can also suppress messages / transactions issued

by the exchange in an attempt to interfere in on-chain settlement

of trades, e.g., permitting partial settlement in which cryptocur-

rency flows to the adversary from a counterparty but not from the

adversary, resulting in the adversary stealing funds. We express a

theoretical solution to these network attacks in terms of an ideal

functionality called a refundable multi-input transaction (RMIT).

RMIT provides a conceptual springboard for securely architecting

a secure cross-chain exchange. We present a highly efficient real-

ization of RMIT in Tesseract, via a protocol that involves a network

of TEE-backed nodes (Section 3.3, with an extended Paxos-based

protocol in [27]). While only one node handles assets directly, oth-

ers can execute or cancel transactions should the main node fail.

This protocol enforces a key fairness property we define called

all-or-nothing settlement.
In summary, our contributions in this paper are as follows:

• We introduce Tesseract, an TEE-backed cryptocurrency exchange

that can support a wide variety of transaction types, with real-

time cross-chain trading as its primary application.

• We consider powerful network adversaries that may seek to

mount eclipse attacks or suppress transactions to achieve unfair

settlement and thus theft of funds. We define a key fairness

property called all-or-nothing settlement and show how to realize

an exchange that achieves this property using as a conceptual

building block an ideal functionality called RMIT.

• We present theoretical and practical techniques to achieve all-or-

nothing settlement in Tesseract. The practical techniques include

within-enclave blockchain monitoring to prevent eclipse attacks

and use of a consensus group of TEE-backed nodes that can

enforce and/or cancel transactions in the case that the main

(asset-holding) exchange node becomes unavailable.

• We implement proof-of-concept of Tesseract, describing our pa-

rameter and design choices.

2 THE TESSERACT DESIGN
In this section we first specify our assumptions and then present an

overview of the operation of Tesseract, describing how it achieves

its security and performance goals. Specifically, Section 2.3 presents

defense against powerful network adversaries that can eclipse the

host; Section 2.4 gives the mechanism that prevents malicious ad-

ministrators from mounting frontrunning attacks; Section 2.5 gives

a defense-in-depth mitigation to TEE attestation failures.

2.1 Threat Model
The Tesseract exchange achieves its security and performance goals

by relying on a trusted execution environment (TEE), i.e., a hardware
architecture that enables code execution in an isolated, tamper-free

environment. The TEE can also attest [61] that an output represents

the result of such an execution, and allows remote users to make

sure that the attestation is correct. The remote attestation feature is

essential for Tesseract, for reasons that will soon become clear.

We assume a strong network adversary (potentially the exchange

operator) that can gain complete physical access to the host in

which the funds are stored, giving her complete control of the

operating system and network connections. We do assume that the

code that runs inside the TEE enclave can neither be observed nor

tampered with. Our reference implementation minimizes the risk of

side-channel attacks by using constant-time and constant-memory

code [109] for the critical part of Tesseract. In our threat model, the

adversary’s goal is to maximize her profit: she may directly attack

the exchange (e.g., to attempt to extract secret keys that control

the funds), but may also attack the network between users and the

exchange to mount frontrunning attacks.

In a sense, the Tesseract exchange still relies on a trusted party

in the form of the hardware manufacturer, because the attestation

key inside CPU (and generates signatures for remote attestation) is

provisioned by the manufacturer. It can be argued that a weaker

yet similar form of trust is required in a practical instantiation of

any cryptographic protocol, since the manufacturer may be able to

attack the protocol by embedding malicious logic into the hardware.

We critique this argument in Section 2.5, where we also give a

double attestation scheme that makes Tesseract strictly more secure

than exchange platforms that rely on centralized servers with no

TEE. Thus, Tesseract still requires trust, but to a significantly lesser

degree than centralized exchanges and other real-time exchange

schemes (cf. Appendix A).

2.2 Overview of Tesseract
Let us describe the operation of Tesseract, illustrated in Figure 1.

For ease of notation, we use Bitcoin and Litecoin as the exemplary

cryptocurrencies. We discuss more technical details in Appendix D.

Essentially, the Tesseract enclave is running light (a.k.a. SPV)

blockchain clients. The enclave code is hardcoded with the hash

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1522

Alice

 if block# > T0+2000
 sigverify PKA
 else
 sigverify PKTEEBTC

 amount: 5

 sigverify PKA

 amount: 5

TXA

 if block# > T1+8000
 sigverify PKB
 else
 sigverify PKTEELTC

 amount: 600

 sigverify PKB

 amount: 600

TXB

Bitcoin:
T0

Litecoin:

Bob

TEE real-time exchange

Deposit(TXA)

Bid(3 BTC, price=310:1)

Bid(1 BTC, price=305:1)

Deposit(TXB)

Ask(500 LTC, price=299:1)

Genesis T1Genesis

1 12 3 2

Figure 1: Illustrating deposits followed by bids/asks.

of the Bitcoin genesis block, or a more recent “checkpoint” block

of the Bitcoin blockchain. When the execution starts, the enclave

receives the latest block headers from an untrusted Bitcoin client

that runs on the same server machine. Each header is validated

according to the protocol rule of the underlying cryptocurrency,

specifically for Bitcoin the proof-of-work (PoW) in the header is

validated against the current difficulty level. Each valid block is

then added to a FIFO queue that is stored inside the enclave, where

the size of the queue is set according to a parameter that specifies

the maximum time window that the enclave maintains. The enclave

maintains the same kind of queue for every other cryptocurrency

that is supported by the Tesseract exchange service.

After initialization, the enclave invokes a key generation proce-

dure to create a keypair (sk,pk) for each supported cryptocurrency.

The randomness that we feed to the key generator is obtained by

concatenating several sources: an hardware-based randomness in-

struction (RDRAND with SGX), the hashes of the latest blockchain

blocks, OS provided randomness (via /dev/random), and the semi-

trusted hardware clock (cf. Section 2.3). Each of these sources in-

creases the entropy of the random data, and by combining them

securely (via concatenation or hashing [84]) inside the enclave we

reduce the likelihood that an adversary will have knowledge of the

secret key sk .
The enclave will then attest that a public key pk is its deposit ad-

dress, for each cryptocurrency. The attestation to these public keys

should be published through multiple services (such as websites,

IPFS [25], and even Bitcoin and other blockchains). Ourmulti-server

design (cf. Section 3.3 and [27]) also helps to make the attested de-

posit addresses publicly known. Figure 1 shows the two deposit

addresses PKTEEBTC, PKTEELTC, for Bitcoin and Litecoin.

When a new user wishes to open a Tesseract account, she first

needs to deposit a significant enough amount into a deposit ad-

dress of the exchange. After the deposit transaction is confirmed

on the blockchain, the (GUI client of the) user will transform the

confirmed deposit into evidence that will be sent to the enclave.

This evidence consists of the transaction that spends the coins into

a deposit address of Tesseract, as well as an authentication path

that consists of the sibling nodes in the Merkle tree whose root

is stored in a block header, and the index of that block. Tesser-

act will credit the user’s account (in the enclave) after verifying

that the deposit transaction is valid, that the block B that contains

the deposit belongs to the enclave’s headers queue, and that B is

buried under enough additional confirmations (see Section 2.3 for

security analysis). Tesseract also protects against replay attacks, by

requiring strictly increasing block indices for the user’s deposits.

In Figure 1, the evidence that Alice provides is Deposit(TXA).
As shown in Figure 1, the output of a valid deposit transaction

needs to specify a time limit (e.g., two weeks). Before the limit

is reached, only the enclave can spend the deposit amount (for

a Bitcoin deposit, this public key PKTEEBTC is hardcoded in the

output and the spending is done by creating a signature with the

corresponding secret key SKTEEBTC). After the time limit, the user

can gain back control of her money by signing with a secret key

that only she knows (see Appendix D for extra details). This deposit

format ensures that the funds will safely be restored to the user if

the Tesseract server becomes unavailable.

We note that the enclave is hardcoded with the current difficulty

parameter of each PoW-based blockchain. At the beginning of the

execution, the enclave will fetch blocks from genesis (or a more

recent checkpoint), and verify that the chain reaches a block of

the hardcoded difficulty level. This prevents an adversary (who

has physical control of the Tesseract server) from feeding a low-

difficulty fake chain to the enclave. The enclave updates the PoW

difficulty level by inspecting the timestamps of block headers in the

FIFO queue and applying the consensus rules of the cryptocurrency

system (the queue size must be at least as the adjustment interval,

which is 2016 for Bitcoin). This implies that an adversary cannot

feed low-difficulty blocks to the enclave at a later time. The users

of the Tesseract exchange can gain extra security by inspecting the

latest block of each traded cryptocurrency and verifying (via remote

attestation) that the enclave has the latest blocks, see Section 2.3

for details.

Malicious usersmay try to carry out a DoS attack on the Tesseract

server by attempting to open many new accounts while providing

fake deposits as evidence. Currently, Bitcoin blocks contain less

than 4000 transactions, which implies that the authentication path

requires 12 or fewer sibling nodes of the Merkle tree, and hence

12 invocations of a hash function. Thus, the time complexity of

verifying the validity of a deposit is quite low. To further mitigate

the prospects of a DoS attack, the enclave may require a moderate

PoW done on the entire evidence data of the deposit (that the

user will compute on her own), or simply limit the number of new

account requests per timeframe.

One reason that the enclave maintains a queue of headers and

fetches the additional block confirmations from the queue — as

opposed to asking the user to concatenate the extra confirmations

as part of the evidence of the deposit — is that the queue provides

an undisputed point of reference in the form of the genesis (or

checkpoint) block. That is to say, if there are two blockchains that

use the same hash function for PoW and have a similar difficulty

level, then a malicious user could deceive the enclave into accepting

a deposit transaction that was confirmed on an incorrect blockchain.

This approach also reduces the communication complexity between

the Tesseract server and remote users.

After the user registers with Tesseract, her deposited amount

is credited into her account entry in the array of users that is

stored inside the enclave. Next, the user will be able to trade in real-

time with other users who opened a Tesseract account, by sending

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1523

Table 1: Deposit confidence vs false positives
p δ n Pr[Erlang(n, p) ≤ δn] Pr[Erlang(n, 1) > δn]
1

10
2 60 2

−75
2
−31

1

10
2 120 2

−145
2
−58

1

5
1.5 120 2

−92
2
−21

1

4
1.3 120 2

−82
2
−10

bid/ask orders to the Tesseract server via a secure channel (see

Section 2.4). If the user wishes to deposit other currencies into her

account, she can then send similar authentication paths as evidence.

In Figure 1, Bob opens an account with Deposit(TXB), and then

asks to sell 500 LTC for the price of 299 LTC per BTC. Since Alice’s

bids are with a price of 305 LTC per BTC and higher, there is no

match yet, and the requests of Alice and Bob are recorded in the

order book kept inside the enclave. Each user can request her recent

trading history via the secure channel, and cancel her pending or-

ders. The Tesseract server publishes an anonymized version of the

order book (i.e., price and volume of each order, without usernames)

with remote attestation; hence anyone can observe the price spread

of the exchange. Since order book updates can occur at a very rapid

rate, we reduce the amount of TEE attestations via delayed ran-

domized checkpoints: the enclave always outputs the anonymized

order book without a signature, and outputs a delayed attestation

(that include an incremental counter) only for randomly selected

data points. The administrator of the Tesseract server provides her

part of the double attestation for all the data points (using HTTPS,

see Section 2.5). Thus, an administrator that publishes fake order

book data repeatedly will (w.h.p.) be detected. The administrator

still has a potential advantage over all other traders because she is

the first to see each order book, but the advantage is quite small.

E.g., if Alice sends a buy order (via TLS, cf. Section 2.4) with a typo,

the sell orders (in the enclave’s order book) that match her order

will execute before the enclave outputs the next order book (the

administrator stands to gain if the order book is shallow or empty).

Real-time trading among the users will cause frequent updates to

the balances of their accounts inside the enclave, but these updates

are not reflected on the actual cryptocurrency systems yet. If noth-

ing else were to happen, the entire process would just be a sandbox

or playground, as the users will simply claim their original money

after the time limit of their deposits is reached. Therefore, from time

to time (e.g., once a day) Tesseract will broadcast to the cryptocur-

rency networks “settlement” transactions that commit the current

account balances of the users. See Figure 3 for an illustration, and

Section 3 regarding a secure settlement protocol.

The enclave extends the time limit of each user’s output in the

settlement transactions that it constructs (e.g., if the user could

control the output in 5 days before the settlement, then she could

control the output in 19 days after the settlement). This allows

uninterrupted trading by active traders. To minimize the size of the

settlement transactions, users who did not trade are not included in

the inputs and outputs.When some of a user’s funds are in an output

whose time limit is about to expire, the user will be prohibited from

trading. The user is permitted to send a renewal request before the
expiration, in case she was unlucky and none of her trade orders

were matched (renewal after the expiration can be exploited by

malicious users who would create conflicting transactions near the

time limit). The user can also request an early withdrawal of some

of her funds. This is done by directing the enclave to prepare an

output that is controlled only by the user, in the next settlement.

The Tesseract exchange collects a proportional fee for each suc-

cessful trade (e.g., 0.1% from both ends of a trade), and a flat fee for

early withdrawal and renewal requests. The enclave requires each

user to have a minimal amount of funds at all times, and limits the

total number of pending orders that a user may have in the order

book – users who flood the exchange with an excessive number of

orders may be penalized (by confiscating some of their funds) and

blacklisted for a period of time. The fees that Tesseract collects are

needed in order to pay miner fees for the settlement transactions.

2.3 Eclipse Attacks
We assume an adversary A that controls p < 1

2
fraction of the

computational power of a blockchain that the enclave interacts

with, and also has physical access to the Tesseract server. Thus, A

can cut the communication between the enclave and the network,

and feed the enclave fake blocks.

Assuming a naive enclave implementation, A can mount an

Eclipse attack [58] as the following example illustrates: A cuts the

enclave off from the Bitcoin network and presents it with a fake

blockchain containing a deposit transaction TXfake. As a result, the
enclave credits A with a higher Bitcoin balance, which A trades

for Litecoin inside the enclave. When the enclave publishes the next

settlement transactions on the two blockchains,A will have traded

her fake Bitcoin for real Litecoin: The Bitcoin settlement transaction

will not be valid because it spends an output from TXfake which was
never included in the real Bitcoin blockchain. However, the Litecoin

settlement transaction will be valid, resulting in A profiting.

To defend against this attack, we rely on the fact that the rate

at which A can feed fake blocks to the enclave is at least twice

slower than in the absence of an attack. (Since p < 1

2
.) Assuming

that the TEE has a trusted clock
1
, the enclave can impose a rule that

requires waiting for additional confirmations if the blocks arrive too

slowly. We note that the Tesseract enclave is assumed to be running

continuously, since our enclave code disallows rollbacks [72, 101] by

design (cf. Section 3.3 and [27] regarding our approach to resiliency).

The time between every two consecutive Bitcoin blocks is an

exponentially distributed random variable. Hence, for a rule that

dictates whether blocks arrive too slowly we should consider the

sum of exponential random variables, known as the Erlang distribu-

tion. Let n be the number of blocks that a deposit needs to be buried

under before it is credited by the enclave. Let δ be the multiplicative

slowness factor by which blocks are allowed to arrive. E.g., δ = 3

means that blocks that arrive 3 times slower than the expected time

(or more slowly than that) will trigger the enclave to wait for n
extra block confirmations before accepting any deposits.

Setting δ to a high value reduces the probability of a false positive

(i.e., a rejected deposit when no attack is taking place and the honest

chain growthwas unluckily slow during some timeframe). However,

a high δ also increases the prospects of an attack. For any δ > 1, it is

possible to set a large enoughn so that the probability of a successful
attack becomes negligible. However, a large n implies that honest

1
The trusted relative timer that SGX can provide is adequate, see [1].

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1524

Price Volume
 $850 2
 $840 5
 $820 5

Buying
 Order Book (BTC/USD)

Arrival of new orders:
1. Alice: buy($870, 10)
2. Bob: sell($820, 10)

Frontrunning:
1. Adversary: buy($851, 10)
2. Bob: sell($820, 10)
3. Alice: buy($870, 10)
4. Adversary: sell($870, 10)

Selling
Price Volume
 $890 3
 $906 5
 $945 4

Figure 2: Example of frontrunning.

users need to wait for a long time before their deposit is confirmed,

which makes the Tesseract exchange service unattractive.

In Table 1 we provide exemplary concrete parameters for n and

δ . E.g., the third row of Table 1 shows that with n = 120 (20 hours

on average in Bitcoin) and δ = 1.5:

• An adversary with computational power p ≤ 1

5
can mount a

successful eclipse attack on the enclave with probability 2
−92

or

smaller.

• In expectation, an honest user will need to wait for extra confir-

mations once in every ≈ 2 million deposits that she makes.

While the concrete parameters that can be obtained are already

quite reasonable, let us stress that prudent users of the Tesseract

exchange will not be exposed to eclipse attacks at all. Any user

can simply compare the latest blocks in the actual cryptocurrency

networks with the latest blocks that Tesseract enclave publishes

(with remote attestation), and cancel her bids/asks in case of a

discrepancy. In the example above, the honest Pj will avoid Pi ’s
attack by observing that the latest Bitcoin blocks that Tesseract

published are inconsistent with the real Bitcoin network, and refuse

to trade her LTC for BTC. Our practical instantiation of Tesseract

has another layer of security that further protects (incautious) users

from eclipse attacks, see Section 3.3.

2.4 Secure Communication
For each user who has already opened an account with Tesseract,

we establish a secure channel (e.g., TLS) when the user wishes to

communicate with the enclave. The reasons for a channel with

authenticated encryption are:

• Fast identification: The authenticated messages in the TLS Record

Protocol are computed via symmetric-key operations, after the

initial key exchange (done via public-key operations in the Hand-

shake Protocol) to establish the channel. Since symmetric-key

operations are an order of magnitude faster than public-key oper-

ations, a persistent TLS connection delivers performance suitable

for real-time trades.

• Frontrunning prevention: An adversary can try to inspect the

entire communication flow that arrives at the Tesseract server,

learn information regarding real-time actions of other users, and

perform trades that exploit this information. Encrypted commu-

nication avoids such attacks.

An example of a frontrunning attack is shown in Figure 2. There,

Alice believes that the BTC price is going to rise. Therefore, she

places an order to buy 10 BTC at $870 each, so that any of the

current sellers will match her order first. On the other hand, Bob

believes that the price of BTC is going to drop, and he therefore

places an order to sell his 10 BTC for a price that is as low as $820.

Given the public order book, Bob’s intention is thus to sell 2 BTC for

$850, 5 BTC for $840, and 3 BTC for $820. If the trades are executed

in this order, it will be to the benefit of Bob, because he will actually

sell 10 BTC to Alice for $870 each. However, an adversary with

this knowledge can permute the orders and insert her own new

orders. In this scenario, the adversary would be guaranteed to gain

$10 · (870 − 851) = $190, by buying Bob’s 10 BTC cheaply and then

selling it to Alice.

Since all users send encrypted messages through their secure

channels, an adversary with a physical control of the Tesseract

server cannot frontrun other users. To the best of our knowledge,

all other designs of real-time cryptocurrency exchanges are exposed

to these kinds of frontrunning attacks. Non-real-time exchanges

such as TEX [63] prevent frontrunning attacks, by employing time-

lock puzzles and progressing in delayed batches.

We note that an adversary may still observe patterns of com-

munication at the IP-level and try to learn information about the

traders. An IP-level anonymizer (e.g., Tor [45]) is inapplicable as

a mitigation technique against such adversaries, since the extra

latency [80] that Tor users incur will put them at a disadvantage

relative to non-Tor users that engage in real-time trading. As an

alternative, the user’s client can randomly inject dummy data into

the TLS channel (which would be ignored on arrival), thereby mak-

ing it more difficult to track communication patterns. Furthermore,

in future versions of Tesseract we plan to allow users to upload

an algorithmic trading program to their enclave account (for a

fee), that will enable them to issue multiple trading orders without

communication with the server. The use of automated trading pro-

grams is quite popular in centralized exchanges (cf. [22]), although

these automated traders do communicate each of their orders to

the server.

2.5 Double Attestation
Several reputable providers may wish to offer different variants

of the Tesseract service (perhaps with their own tokenized coins

and other digital assets, cf. Appendix E). This raises the following

question: does a single entity (i.e., the hardware manufacturer) have

the power to compromise the security of all the Tesseract-based

platforms, simultaneously?

No such single entity exists with regard to centralized exchanges

(cf. Appendix A.1), because these exchanges are independent of

one another. That is to say, a security breach of one centralized

exchange will not have a direct impact on the users of the other

centralized exchanges.

For trusted hardware with remote attestation support, the plain

way that the manufacturer can break security is by attesting to

fraudulent data. In our context, suppose for example that there

are two Tesseract-based exchanges X1,X2 that invite users to de-

posit their funds to PKTEEBTC1 and PKTEEBTC2, respectively. If Intel

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1525

has knowledge of the secret signing keys sk1, sk2 that are embed-

ded into the CPUs of X1 and X2, then it can forge signatures that

attest to fresh ephemeral public keys PK
′
TEEBTC1

, PK′
TEEBTC2

that

Intel would generate together with the corresponding secret keys

SK
′
TEEBTC1

, SK′
TEEBTC2

. Thus, Intel will be able deceive users into

sending their deposits to PK
′
TEEBTC1

, PK′
TEEBTC2

, and then steal

funds that users wished to deposit to X1,X2.

The manufacturer may also break security by embedding mali-

cious logic into the hardware. For instance, whenever an application

executes code that generates a (supposedly) random secret key, the

key will actually be generated in a way that can be predicted by the

manufacturer. While this attack would be easy enough if there were

one assembly opcode that generates a random key (themalicious op-

code can use a randomness source with low entropy), it is far more

difficult to achieve predictable behavior for any application-level

code that is executed by a general-purpose CPU.

Another attack vector that the hardware manufacturer may at-

tempt is simply to send the data that a CPU generates over the

network (to the manufacturer’s address), without consent or knowl-

edge of the administrator of the server computer. This is indeed a

concern with Intel’s Management Engine (see [91]), but it is not

an inherent defect of the trusted hardware model (hopefully the

Management Engine will allow opt-out).

Similarly to [97], the Tesseract platform protects against false

remote attestation by attaching a secondary signature – created by

the administrator of the platform – to the attested data. Following

the above example, the users ofX1 (resp.X2) will take into consider-

ation the reputation of the administrator of X1 (resp.X2), and reject

the attested data unless it was signed both by the TEE-enabled CPU

and by the reputable administrator. Hence, the hardware manu-

facturer alone cannot attack all Tesseract-based exchanges, since

the manufacturer has to collude with the administrator of an ex-

change in order to create a fraudulent attestation. This implies that

Tesseract is strictly more secure than centralized exchanges.

The double attestation mechanism is also efficient, since the

secondary signature is rarely needed. Specifically, the secondary

signature is required only once for the hardware-associated public

key identity (cf. [27, Section 6.1]) of the enclave, and this identity

can then establish the TLS channel with each user. All further com-

munication in a TLS channel (e.g., bid/ask orders) is done without

attestation. For non-user-specific data such as real-time updates to

the public order book, the secondary signature is already implicit if

HTTPS is used to view this data.

3 ATOMIC CROSS-CHAIN SETTLEMENTS
Assume first that Tesseract only supports the trading of digital

assets that circulate within a single cryptocurrency. In this case,

the publication of each settlement transaction — that reflects the

account balances of the users after trading in a time period — does

not entail the risk of an adversary stealing funds from honest users.

The reason is that an invalid deposit (see Section 2.3) or blockage of

the settlement will amount just to a DoS attack, since all the users

will claim their prior funds after the time limit in the output of their

original deposit (or the last settlement transaction) expires.

On the other hand, trading among multiple cryptocurrency sys-

tems (that are independent of one another) may allow an adversary

Bob
300000 LTC

Bob
1000 BTC

Carol
2 BTC

Dave
1 BTC

Dave
300 LTC

Alice
300000 LTC

Carol
300 LTC

TX1 TX2

Bitcoin transaction Litecoin transaction

Alice
1000 BTC

Carol
3 BTC

Figure 3: The cross-chain settlement problem.

to steal funds from honest users. We provide an illustration of the

risk in Figure 3. Suppose for instance that 1 BTC is worth $2000, and

also that the market price of 1 BTC is 300 LTC. In the illustration,

Alice and Bob traded 1000 BTC (i.e., $2 million worth of BTC) for

300000 LTC (i.e., $2 million worth of LTC), while Carol and Dave

traded 1 BTC for 300 LTC. Thus, the enclave will construct and sign

the Bitcoin and Litecoin settlement transactions, and attempt to

broadcast the settlements to the Bitcoin and Litecoin networks. An

adversary with physical access to the Tesseract server can collude

with Alice and intercept the Bitcoin settlement transaction when it

leaves the CPU but before it is broadcast to the Bitcoin network,

and let the Litecoin settlement transaction go through and reach

the Litecoin network. The result is that the transfer of ownership

of $2 million worth of LTC from Bob to Alice will be committed on

the Litecoin system, while the transfer of ownership of $2 million

worth of BTC will never occur. In effect, Bob lost $2 million worth

of funds to Alice.

Let us provide security definitions that capture the above fairness

problem.

Definition 3.1 (All-or-nothing settlement). Given the transaction

tx1 for system CA and the transaction tx2 for system CB , an all-

or-nothing cross-chain settlement is a protocol that guarantees

that

(1) Both tx1 will become confirmed on system CA and tx2 will

become confirmed on system CB , or

(2) Neither tx1 will become confirmed on system CA nor will tx2
become confirmed on system CB .

In our context, CA and CB are cryptocurrencies. We stress that

parties that execute the consensus protocol for CA may be unaware

of the existence of CB , and vice versa.

Notice that Definition 3.1 does not imply that honest users are

fully protected against financial loss. Specifically, an adversary A

that prevents both tx1 and tx2 from being confirmed may benefit

at the expense of honest users: A may wish to renege on a trade

after observing some external events and/or price fluctuations that

worked to her disadvantage. Still, Definition 3.1 implies better se-

curity than that of the commonplace centralized exchanges (cf.

Appendix A.1), because the users of such centralized exchanges

run not only the risk that their trades will be reversed but also the

risk that their initial funds will be stolen.

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1526

Bob
300000 LTC

TX1 TX2

Bitcoin transaction Litecoin transaction

Alice
1000 BTC

 if block# > T1 + 2000 + 200
 sigverify PKA
 else if block# > T1 + 2000
 (sigverify PKB) AND (x: hash(x)=Y)
 else
 sigverify PKTEEBTC

 amount: 1000 BTC

 if block# > T2 + 4·(2000 + 100)
 sigverify PKB
 else if block# > T2 + 4·2000
 (sigverify PKA) AND (x: hash(x)=Y)
 else
 sigverify PKTEELTC

 amount: 300000 LTC

Figure 4: Settlement with two parties.

Definition 3.2 (Unprivileged settlement). LetU in

1
,U in

2
denote the

sets of users in the inputs of the transactions tx1, tx2, and let

U out

1
,U out

2
denote the sets of users in the outputs of tx1, tx2. Let

U = U in

1
∪U in

2
∪U out

1
∪U out

2
. An unprivileged cross-chain settle-

ment is a protocol that satisfies Definition 3.1 in the presence of

an adversary A who can obtain any information that every user

P ∈ U accesses, at the moment that the information was accessed.

In essence, Definition 3.2 implies that honest traders cannot uti-

lize secret data during the settlement protocol (such as picking a

secret x ∈ {0, 1}λ in the first step of the ACCS protocol in Appen-

dix B), because A could break the security by gaining access to

any sensitive data that honest traders attempt to use. Thus, Defi-

nition 3.2 captures a rushing adversary who has physical control

over the TEE server and can intercept all the data that leaves the

CPU, before honest users have an opportunity to make use of this

data in a secure fashion. Note that Definition 3.2 does not permitA

to observe the secret keys that enable honest users to spend their

funds, as long as they do not access their secret keys during the

settlement protocol.

In fact, Definition 3.2 gives A more power than a real-world

adversary with physical control over the TEE server. Consider for

instance a protocol where in the first step the enclave encrypts data

using Carol’s public key, and attempts to send the encrypted data

to Carol over the network. In that case,A will not be able to obtain

the data that Carol accesses; the only action available to A is to

mount a DoS attack and not let the protocol make progress. The

motivation for the more conservative definition is that we wish to

support settlement transactions among a large number of users (e.g.,

thousands) and multiple cryptocurrency systems, where the users

can be anonymous and can create Sybil accounts. In this setting,

it is difficult to design a secure protocol that sends sensitive data

to rational users (with the expectation that they will act in their

own self-interest), due to the possibility of malicious coalitions with

Sybils who would be willing to sacrifice some of their funds. For this

reason, Definition 3.2 denies the enclave the power to communicate

privately with individual users.

Thus, intricate solutions to the all-or-nothing settlement problem

are needed mainly because our goal is to support many anonymous

traders. Let us in fact demonstrate that with a few users, the all-

or-nothing settlement problem can become easy. In Figure 4, Alice

Protocol Πsimp

(1) The enclave picks a symmetric key K ∈ {0, 1}λ .

(2) The enclave embeds K into TX1, TX2.
(3) The enclave sends ct = encryptK (TX1, TX2) to S1, S2, . . . , SN .

(4) The enclave waits for acknowledgements from S1, S2, . . . , SN .

(5) The enclave broadcasts TX1 to C1 and TX2 to C2.

(6) Each Sj that sees TXi but not TX3−i will fetchK from TXi , decrypt
ct, and broadcast TX3−i to C3−i .

Figure 5: Naive protocol for fair settlement.

and Bob again wish to trade $2 million worth of BTC for LTC, but

they are the only users of the Tesseract exchange. Here, the enclave

prepares the settlement transactions TX1, TX2 that keep the enclave
in control in the next two weeks (2000 blocks where T1 is the head
of the Bitcoin blockchain, and 8000 blocks where T2 is the head of

the Litecoin blockchain). This enables Alice and Bob to continue to

trade, if they wish to. The secret data x ∈ {0, 1}λ is generated inside

the enclave. After the enclave receives evidence that TX1 and TX2
are both confirmed, it sends x in encrypted form only to Alice, over
a secure channel. After the two weeks, the outputs can be redeemed

using x , otherwise the timeouts allow the funds to be returned to

each user. As with the ACCS protocol (cf. Appendix B), the timeout

in TX1 is longer, so Bob will have enough time to redeem the 1000

BTC after Alice reveals x , spending 300000 LTC.
Let us note that Definition 3.2 does not give A the power to

observe secret information inside the enclave. In the Tesseract

implementation, this is justified because we use a constant-time

constant-memory library for cryptographic operations [109], re-

ducing the potential for side-channels greatly.

We now present solutions to the all-or-nothing settlement prob-

lem, in a setting that involves many anonymous traders.

3.1 Naive Protocols
To clarify why an intricate protocol is needed, we first describe a

simple protocol Πsimp that relies on N extra servers S1, S2, . . . , SN
that are supposedly reputable. See Figure 5.

The cryptocurrency systems C1 and C2 can be for example Bit-

coin and Litecoin as in Figure 3. The embedding of K into TX1 and
TX2 can be done with the OP_RETURN script instruction [23], which

allows storing arbitrary data on the blockchain as an unspendable

output (for a small fee). It is not possible to mount a malleability

attack that removes K from TX1 or TX2, because the signatures

for TX1 and TX2 are over the entire transaction data (i.e., data that

includes the OP_RETURN output).

Since information that is published on a blockchain becomes

publicly available, the idea behind Πsimp is that any non-corrupt

server Si will be able to impose fairness by fetching K from a public

blockchain and decrypting the ciphertext ct, because ct is already
in Si ’s possession.

Unfortunately, Πsimp is insecure, due to a race condition. The

adversaryA can intercept both TX1 and TX2, but broadcast neither
of them initially. Since the users’ outputs must have a time limit

(see Section 2),A will wait until an input (that belongs to a corrupt

user Pj) in TXi is about to expire, and then broadcast TX3−i . Then,

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1527

Functionality RMIT (refundable multi-input transaction)

Notation: let C be a cryptocurrency system.

Upon receiving tx = ({in1, . . . , ink }, {out1, . . . , outn }, ϕ1, ϕ2)

(1) Verify ∀j ∈ [k] : inj is unspent in C.

• If the verification failed then abort.

(2) Verify

∑k
j=1 amount(inj) ≥

∑n
j=1 amount(outj).

• If the verification failed then abort.

(3) Make {in1, . . . , ink } unspendable in C.

(4) Wait to receive a witness w
(a) If ϕ1(w) = 1 then commit {out1, . . . , outn } to C, and ter-

minate.

(b) If ϕ2(w) = 1 then make {in1, . . . , ink } spendable in C, and

terminate.

(c) Otherwise, return to Step 4.

Figure 6: The ideal functionality RMIT.

A will instruct Pj to spend that input, thereby invalidating TXi .
Hence, even if all of the servers S1, S2, . . . , SN are honest, they may

not have enough time to fetch K from TX3−i and broadcast the

decrypted TXi .
If the cryptocurrency systems C1,C2 allowed transactions to

embed large arbitrary data, then it would have also been possible

to eliminate the reliance on S1, S2, . . . , SN . Briefly, each TXi will
embed the TX3−i data in a designated output, the enclave will

broadcast both TX1 and TX2, and any user would then have the

opportunity to enforce fairness. This would bloat Ci with the entire

TX3−i data, which is undesirable — there are risks associated with

a popular decentralized cryptocurrency that allows embedding

of large data (e.g., illegal content). In any event, this approach is

insecure due to the same race condition that Πsimp exhibits.

In the following section, we give a theoretical protocol Π
theo

that

avoids the race condition, using scripts with PoW-based logic that

ensures the occurrence of certain conditions on another blockchain.

3.2 Theoretical Protocol
Let us present a theoretical protocol for the all-or-nothing settle-

ment problem, which solves the race condition that Section 3.1

elaborates upon. Following Section 3 and Figure 3, we condition

the second settlement transaction TX2 on the result of the first

settlement transaction TX1, by constraining TX2 with PoW-based

predicates that verify certain events’ occurences on another block-

chain.

As we will see, this approach is problematic with the current Bit-

coin protocol. Thus, we first describe the settlement protocol in an

hybrid world that has an ideal “refundable multi-input transaction”

(RMIT) functionality, defined in Figure 6.

The description of TX1, TX2 is outlined in Figure 7. We use the

notation TXi , j to denote that TXi was updated by supplyingw that

satisfied ϕ j . The secrets x1 ∈ {0, 1}λ, x2 ∈ {0, 1}λ are generated

inside the enclave. The predicates ϕ ′
1
,ϕ ′

2
are specified in Figure 8.

To elaborate, the hardcoded parameter D0 specifies a difficulty

level for PoW mining, ℓ1 is an upper bound on the length of an

authentication path of a Merkle tree, and ℓ2 is a PoW confidence

parameter. The input witnessw for ϕ ′
1
consists of up to ℓ1 sibling

Bob
300000 LTC

Bob
1000 BTC

Carol
2 BTC

Dave
1 BTC

Dave
300 LTC

Alice
300000 LTC

Carol
300 LTC

TX1 TX2

Bitcoin transaction Litecoin transaction

Alice
1000 BTC

Carol
3 BTC

φ1 ={x1: hash(x1)=Y1}

φ2 ={block# > T0}

φ'1={TX1,1 is confirmed}
 OR
 {x2: hash(x2)=Y2}

φ'2={TX1,2 is confirmed}

RMIT: RMIT:

Figure 7: Theoretical fair settlement transactions.

Predicate ϕ′
1

Hardcoded parameters: TX1, D0, ℓ1, ℓ2
Input: w = ((v1, d1), (v2, d2), . . . , (vk , dk), y, H1, H2, . . . , Hℓ2)

(1) Embed hash(TX1,1) into y
(2) For j = 1 to min(k , ℓ1)

• If dj = ’L’ then y := hash(y, vj) else y := hash(vj , y)
(3) For j = 1 to ℓ2

• Embed y into Hj and compute y := hash(Hj)

• If y > D0 then return false
(4) return true

Predicate ϕ′
2

Hardcoded parameters: TX1, D0, ℓ1, ℓ2, ℓ3, b1
Input: w = (G1, . . . ,Gn , (v1, d1), . . . , (vk , dk), y, H1, . . . , Hℓ2)

(1) z := b1
(2) For j = 1 to max(n, ℓ3)

• Embed z into G j and compute z := hash(G j)

• If z > D0 then return false
(3) Embed hash(TX1,2) into y
(4) For j = 1 to min(k , ℓ1)

• If dj = ’L’ then y := hash(y, vj) else y := hash(vj , y)
(5) Embed y into H1 and compute y := hash(H1)

(6) If y , z then return false
(7) For j = 2 to ℓ2

• Embed y into Hj and compute y := hash(Hj)

• If y > D0 then return false
(8) return true

Figure 8: The cryptocurrency scripts ϕ ′
1
,ϕ ′

2
.

hash values vj in the authentication path (with direction dj ∈

{’L’,’R’}) for the leaf transaction y, together with exactly ℓ2 block

headers H1,H2, . . . ,Hℓ2 . The predicate ϕ
′
1
will verify that TX1,1 is

in a leaf that reaches some root value r , and that r is extended by

valid proofs of work H1,H2, . . . ,Hℓ2 that meet the difficulty level

D0. The input witness w for ϕ ′
2
does the same, but also verifies

that there is a valid PoW chain of at least ℓ3 blocks between the

hardcoded b1 and TX1,2.
We describe the theoretical protocol Π

theo
for all-or-nothing

settlement in Figure 9. Note that the enclave constructs TX2 only
after it receives the evidence that TX1 was confirmed in the end

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1528

Protocol Π
theo

(1) The enclave releases TX1 and waits for evidence that it was con-

firmed on the cryptocurrency system C1.

(2) The enclave releases TX2 and waits for evidence that it was con-

firmed on the cryptocurrency system C2.

(3) The enclave releases x1 and waits for evidence that TX1,1 was

confirmed on the cryptocurrency system C1.

(4) The enclave releases x2.

Figure 9: Theoretical protocol for fair settlement.

of Step 1, by hardcoding b1 as the hash of the block in which TX1
resides.

Essentially, Π
theo

avoids the race condition by first making sure

that TX1 was resolved on the cryptocurrency system C1 either

by committing the output or by committing the inputs, and then

allowing TX2 to commit accordingly in the cryptocurrency system

C2. If A carries out a DoS attack before x1 is released in Step 3,

then the users will gain possession of their inputs in the C1 after

block T0 is reached (see Figure 7), which would be followed by the

miners of C1 starting to create a witnessw that satisfies ϕ ′
2
(w) = 1

and thus allowing users to gain possession of their inputs in C2. If

the enclave exposes x1 in Step 3, it is still the case that the miners

of C1 will be harnessed to resolve TX1 in one of the two possible

ways.

In the case that no attack is taking place, the enclave will release

x2 in Step 4, thereby allowing the settlement to complete quickly

andwithout asking theminers of C2 to evaluate a complex condition

that relates to another blockchain.

However, the assumption regarding the computational power of

A has to be slightly less conservative in comparison to the power

that is needed to mount a classical double-spending attack [94],

because Π
theo

enablesA to gain a minor head start that depends on

the parameter T0. Specifically, A can intercept x1 in Step 3 and use

her own computational power (and x1) to create a hidden chainw1

that spends TX1 into TX1,1. The miners of C1 will create the witness

w2 in which TX1 is spent into TX1,2, but they will only begin to

work onw2 after block T0 is reached.
The success probability of an attack with a duration ofT1 blocks

for the head start is

∞∑
k=0

(
Pr[NegBin(T1,p) = k] · Pr[NegBin(ℓ2,p) ≥ ℓ2 − k]

)
.

The first negative binomial variable counts the number of blocks

thatA creates during the time that the honestminers are creatingT1
blocks. This corresponds to the head start, because these T1 blocks
will not contribute to the witness that the predicate ϕ ′

2
requires.

The second negative binomial variable counts the number of blocks

that A creates while the honest miners are creating ℓ2 blocks. If

A can extend her head start to reach ℓ2 or more blocks before the

honest miners, then the attack succeeds.

In Table 2, we give exemplary figures for the attack on Π
theo

. For

easy comparison, we also include the success probability with-

out a head start (i.e., T1 = 0), which is simply the probability

Pr[NegBin(ℓ2,p) ≥ ℓ2].

Table 2: Breaking the security of Πtheo

p T1 ℓ2 with head start with T1 = 0

1

3
6 50 0.0016 0.0003

1

5
10 50 2

−30
2
−37

1

5
6 50 2

−33
2
−37

1

5
6 100 2

−65
2
−69

1

10
20 50 2

−64
2
−79

1

10
10 50 2

−71
2
−79

1

10
10 100 2

−145
2
−153

For the opposite attack, A may intercept x1 in Step 3 and then

create a hidden chainw2 that excludes x1. With this attack strategy,

A will broadcast x1 to C1 right before the timeout T0 is reached,
in hope that her hidden chain w2 will outcompete the chain that

the miners of C1 begin to create. This attack vector is mitigated

by disallowing a precomputation of w2. Specifically, the enclave

hardcodes b1 into TX2, and the predicate ϕ ′
2
verifies that b1 is buried

under at least ℓ3 blocks.

The parameter ℓ3 should be set to 2ℓ2+T1. This gives a time span

ofT1 blocks to update TX1 into TX1,1, after the enclave received the
evidence that TX1, TX2 were confirmed and thus revealed x1. The
parameter T1 should not be too low, to avoid the cancellation of

the settlements in case of a short network outage or a slow chain

growth in C2 relative to C1.

In the current Bitcoin network, ℓ1 = 12 suffices, hence the predi-

cates ϕ ′
1
,ϕ ′

2
require ≤ 12 + ℓ2 + ℓ3 hash invocations for confidence

level ℓ2. Given that the complexity of ECDSA signature verification

is an order of magnitude higher than that of invoking a hash func-

tion, moderate values such as ℓ2 = 50, T1 = 10, ℓ3 = 2ℓ2 +T1 = 110

imply that Bitcoin miners can validate the scripts ϕ ′
1
,ϕ ′

2
for a mild

fee. These parameters for PoW-based SPV proofs can be even better

if the cryptocurrency system supports NIPoPoW [35, 65].

It is unlikely that Π
theo

will be vulnerable to an attack that em-

beds a transaction that spends TX1 into TX1,1 or TX1,2 in another

cryptocurrency system C3, where C3 has the same PoW hash func-

tion and the same difficulty level. The reason is that the txid hash

of TX1 in the leaf of the Merkle tree is determined according to the

prior history that goes back to the genesis block of C1. Unless C3

allows the input of a transaction to consist of arbitrary data,A will

need to mount a preimage attack that creates valid transaction in

C3 with a particular value (i.e., the txid of TX1) as its hash.
The main obstacle to an implementation of Π

theo
in Bitcoin is the

RMIT functionality. It is possible to implement the specific RMIT

that Π
theo

requires by creating a transaction txinit that spends the
inputs into a single output that is controlled by the secret signing

key of Tesseract, and creating a refund transaction tx
refund

that has

locktime [6] of T0 and spends the output of txinit back into the

inputs. After the enclave receives evidence that tx
refund

is publicly

available, it will broadcast txinit to the Bitcoin network. When

the execution of Π
theo

reaches Step 3 and the enclave needs to

release x1, it will broadcast a transaction txcommit that spends the

output of txinit into the desired outputs. The only problem with this

procedure is that there is no good way to make tx
refund

publicly

available while relying on the security of Bitcoin alone. In a purely

theoretical sense, it is possible to make tx
refund

available by storing

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1529

TEE real-time exchange

S1
TEE

S2
TEE

S3
TEE

SN
TEE

Figure 10: Practical fair settlement.

it as arbitrary data on the Bitcoin blockchain using OP_RETURN, but
this will be very costly because the size of tx

refund
can be dozens of

kilobytes and the capacity of an OP_RETURN output is only 80 bytes.

An efficient version of RMIT can be done via a Bitcoin protocol fork:

an initial transaction will mark both the inputs and the new outputs

as unspendable in the UTXO set, and a subsequent transaction will

supply a witness to ϕ1 or ϕ2 and thereby ask the miners to make

either the inputs or the outputs spendable (for a fee). An Ethereum

implementation of a RMIT contract is possible, but it should be

noted that Π
theo

(and its generalization to more than two systems)

requires RMIT support by all the cryptocurrency systems that are

involved in the settlement.

Our analysis of Π
theo

gives the essential security arguments

for a protocol that enables an all-or-nothing settlement. A formal

security proof of Π
theo

(as well as Πprac of Section 3.3) requires a

rigorous model for the cryptocurrency consensus system — such

as GKL [51] or PSS [86] — together with a rigorous model that

is rich enough to express the scripting language that controls the

users’ coins (see, e.g., [78]). In Appendix C we provide a formal

security proof (under certain assumptions) for the ACCSs protocol

of Appendix B, that also serves to show several of the ingredients

that a proof for Π
theo

needs to incorporate.

3.3 Practical Protocol
The theoretical protocol Π

theo
of Section 3.2 is resilient against an

adversary who has total access to the server machine, except for

the data that is inside the TEE-enabled CPU. Here, we present a

practical protocol Πprac for the all-or-nothing settlement problem

that relaxes this resiliency aspect, but in fact offers better security

in other respects.

Our strategy is to distribute the trust among N additional servers

that are all running TEE enclaves (see Figure 10), and ensure that

Πprac satisfies Definition 3.2 if there exists at least one server Sj ∈
{S1, S2, . . . , SN } that is beyond the reach of the adversary A. That

is to say, we assume that Sj can communicate with cryptocurrencies

C1,C2 without interference.

The main idea of Πprac is to emulate the essential characteristic

of the theoretical protocolΠ
theo

, which is to wait for a proof that the

settlement transaction TX1 was either committed to C1 or cancelled,

and then do the same for the settlement transaction TX2.
The settlement protocol Πprac that Tesseract and the servers

S1, S2, . . . , SN execute is specified in Figure 11. As a prerequisite,

the Tesseract server and S1, S2, . . . , SN need to share a symmetric

secret key K that is known only to their enclaves. The transactions

TXc
1
, TXc

2
are “cancellation” transactions that invalidate the settle-

ment transactions TX1, TX2, respectively. In Bitcoin, TXci can be

implemented simply by spending one of the inputs of TXi into a

Protocol Πprac

(1) Tesseract sends ct = encryptK (TX1, TX2, TXc
1
, TXc

2
) to

S1, S2, . . . , SN .

(2) For every i ∈ [N], Tesseract waits for acknowledgement from Si
that it received ct.

(3) Tesseract broadcasts TX1 to C1.

(4) Starting from the time at which it received ct in Step 1, each server
Si ∈ {S1, S2, . . . , SN } inspects the next blocks of C1

• If Si does not see TX1 on C1 withinT1 blocks, then it broadcasts

TXc
1
to C1.

• If Si sees that TX1 has ℓ2 extra confirmations on C1, then it

broadcasts TX2 to C2.

• If Si sees that TXc
1
has ℓ2 extra confirmations on C1, then it

broadcasts TXc
2
to C2.

Figure 11: Practical protocol for fair settlement.

new output that is identical to that input (this will cause TXi , TXci
to conflict with each other).

Thus, the protocol Πprac seeks to preserve the property that

TX2 remains confidential inside the enclaves for as long as TX1 is
not yet confirmed. This property avoids the risk that TXi , TXc

3−i
will compete for confirmations at the same time, as that can easily

violate the all-or-nothing requirement.

In the case that at least one server Si is not under physical attack,
we have that either TX1 or TXc

1
will be broadcast to C1 within T1

blocks. As a consequence, either TX1 or TXc
1
will be confirmed after

T1 + ℓ2 blocks. This allows Si or one of the other non-adversarial
servers to broadcast the appropriate transaction (i.e., TX2 or TXc

2
)

to the cryptocurrency system C2, causing it to be confirmed too.

The adversary A may attempt to mount a race attack with a

head start ofT1 blocks, by eclipsing one of the servers Sj . The attack
can proceed as follows:

(1) A intercepts the data TX1 that Tesseract reveals in Step 3 of Πprac, and

deactivates the Tesseract server.

(2) A eclipses the server Sj , and feeds it with a fake blockchain (generated

by A herself) that contains TX1.
(3) When the enclave of Sj becomes convinced that TX1 was confirmed, it

releases TX2.
(4) A waits until TXc

1
is confirmed on C1, and then broadcasts TX2 to C2.

As with Π
theo

, the reason that A obtains a head start is that the

honest participants wait for a duration of T1 blocks before they

attempt to invalidate TX1, whereas A begins to create her fake

chain immediately — see Section 3.2 and Table 2 for analysis. Note

that the purpose of the cancellation transaction TXc
2
is to defeat this

race attack, in the case that A fails to generate ℓ2 blocks while the

honest network generates T1 + ℓ2 blocks.
In fact, it is more difficult for A to exploit the head start and

attack Πprac, than it is to attack Π
theo

. This is because Πprac can

specify the precise duration T1, and Π
theo

has to estimate T1 by

setting T0 in the predicate ϕ2. This estimation should use a lenient

bound (that will likely give A a larger head start), as otherwise

the variance of the block generation process can cause ϕ2 to be

triggered and thus abort the settlement.

Notice that A cannot mount an eclipse attack before Step 3 of

Πprac is reached. Only the Tesseract enclave can produce the data

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1530

Table 3: Settlement transaction size and fee. In the columns
of total cost and cost per user, the first value represents the
cost on Bitcoin and the second one on Litecoin.

Number of

active users

Size of settlement

transaction (KB)

Total settlement

cost (USD)

Settlement cost

per user (USD)

10 2.538 10.004/0.192 1.000/0.019

100 23.674 93.312/1.788 0.933/0.018

1000 235.026 926.374/17.753 0.926/0.018

2000 469.887 1852.093/35.494 0.926/0.018

3000 704.766 2777.886/53.236 0.926/0.018

4000 939.640 3703.659/70.978 0.926/0.018

TX1, and it will do so only after receiving all the acknowledgements

from S1, S2, . . . , SN in Step 2. Therefore, an eclipse attack will be

thwarted if at least one non-adversarial server Si ∈ {S1, S2, . . . , SN }

is present, because Si will broadcast the invalidation transactions

TXc
1
, TXc

2
to ensure the all-or-nothing guarantee of Definition 3.1.

In practice, it is preferable that the Tesseract enclave will wait

for acknowledgements from only a constant fraction of the servers

Si ∈ {S1, S2, . . . , SN }, so that A will not be able to deny service

by preventing a single acknowledgement from reaching Tesseract

in Step 2 of the settlement procedure. Our practical approach can

in fact make Tesseract resistant to DoS in a broader sense, via a

consensus protocol among identical servers. Due to lack of space,

we defer the full protocol to [27].

Another advantage of Πprac is that it can support other cryp-

tocurrency systems besides a PoW blockchain. This is because

the servers S1, S2, . . . , SN can run a full node inside their enclave,

whereas the predicates ϕ ′
1
,ϕ ′

2
lack the power to express the irre-

versibility condition of a more complex cryptocurrency system (see

Appendix D).

Irrespective of the settlement procedure, the Tesseract exchange

server can fetch from S1, S2, . . . , SN the heights of their longest

chains (e.g., once every 30 minutes), and refuse to confirm users’

deposits if less than N/2 of the servers respond. This would avert

fake deposits from being confirmed due to an eclipse attack, without

relying on the prudence of the users.

4 IMPLEMENTATION AND EVALUATION
We implemented a prototype of Tesseract that executes the clients’

trade orders, and performs all-or-nothing settlements. In this sec-

tion, we present implementation details and evaluation results.

4.1 Real-time trading
We implemented a continuous limit-orderbook that runs fully pro-

tected inside the enclave. Figure 12 contains end-to-end measure-

ments of the real-time trading performance of our prototype: For

each level of concurrency, users concurrently send encrypted and

signed orders to the enclave over the local network and we mea-

sure the throughput and latency over the course of processing 3

million orders. Each user repeatedly sends a randomly generated

order, and then (synchronously) awaits a reply from the exchange

(i.e. whether the order was (partially) filled and/or placed in the

orderbook). The latency is the time between sending the order and

receiving a response. The exchange is running on a recent model

Intel CPU (i7-8700) using six threads, one per physical core.

1 2 4 8

1
6

3
2

5
0

1
0
0

2
0
0

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

0

0.5
1

1.5
2

·104

Number of concurrent trading users

O
r
d
e
r
s
/
s
e
c

0 1,000 2,000 3,000 4,000 5,000

0

100

200

300

Number of concurrent trading users

L
a
t
e
n
c
y
(
m
s
) Median Mean 99

th
pctile

Figure 12: Trading performance

0 1,000 2,000 3,000 4,000
0

25

50

75

100

Number of users participate in settlement

T
i
m
e
(
s
)

Figure 13: Time to generate a pair of settlement transactions.

As suggested by Figure 12, our prototype supports thousands

of concurrent users, processing over 18k orders per second, with

latency scaling linearly with the number of users; for 2k concurrent

users we achieve 99
th
percentile latency of 106ms, for 5k concurrent

users we achieve 99
th
percentile latency of 268ms. For low numbers

of concurrent users, full throughput is not achieved due to idle

exchange threads that are not being utilized by our synchronous

benchmark.

4.2 All-or-nothing settlement
We implemented the atomic settlment protocol Πprac between Bit-

coin and Litecoin. To minimize the Trusted Computing Base (TCB),

we ported only the necessary part of Bitcoin Core v0.14.0 to SGX,

resulting in only using ∼13.3% of it. We use NaCl [32] for light-

weight secure channels, rather than TLS. The entire TCB of our

implementation consists of approximately 850 source lines of code

(SLoC) for the functionalities that run inside the SGX enclave. This

figure excludes Bitcoin Core and NaCl code, which contribute about

10,284 SLoC and 1,057 SLoC, respectively.

The source code of our implementation demo is available at

https://github.com/iddo333/exchSGX. We tested the correctness

of our implementation by running it on the public testnets. The

confirmed settlement transactions can be viewed at [10, 11].

Transaction size and fees. First, we evaluate the settlement trans-

action size and cost with respect to different number of active

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1531

https://github.com/iddo333/exchSGX

traders. Note that only users with trade activity (since the last set-

tlement) take part in the settlement transactions. As shown in Ta-

ble 3, the size of the settlement transactions grows linearly with the

number of active user, while the transaction fee per user roughly

remains constant. On average, it costs a single user approximately

92.6 cents to settle on Bitcoin and 1.8 cents on Litecoin. This results

in a total daily cost of 94.4 cents for an active user trading between

Bitcoin and Litecoin.

We estimate the transactions fees by calculating the average

transaction fee per kilobyte from historic blockchain data. Specifi-

cally, we analyzed 10081580 transactions in blocks 587351 to 592040

(July 28, 2019 - Aug 27, 2019) using the Google BigQuery [42] Bit-

coin dataset, and found the average unit cost of transaction fee on

the Bitcoin network to be 0.00039 Bitcoins per kilobyte of trans-

action data (BTC/KB). Similarly, the average transaction fee on

Litecoin is 0.00105 LTC/KB. The Bitcoin and Litecoin prices (on

August 27th, 2019) were 10106.6 USD/BTC and 71.94 USD/LTC,

respectively.

Transaction generation time. Figure 13 shows the total generation
time of two settlement transactions (one for Bitcoin and one for Lite-

coin). The bottleneck in the generation of a settlement transaction

is hashing a large amount of data, and signature computation. Our

current implementation generates legacy transactions (i.e., before

the recent SegWit [33] upgrade), hence the signing time is qua-

dratic [2] in the number of inputs – each input requires re-hashing

slightly different versions of the entire data, instead of only the

signature computation. The structure of transactions on Bitcoin

and Litecoin are the same, so the generation time of one settlement

transaction inside the SGX enclave for either blockchain is approx-

imately 6.6 seconds for 1000 users. Up to 5.7 seconds, 86.3% of the

generation time, is spent on hashing.

Since all the trading is done off-chain and settlements occur pe-

riodically, the time for generating settlement transactions is minor,

even when the number of active traders is large. E.g., for daily settle-

ments with 1000 users that trade between 2 blockchains, transaction

generation takes about 13.2 seconds once every 24 hours. Note that

the size of a settlement transaction among 1000 active traders is

235 KB, i.e., about 23% of the Bitcoin block capacity (pre-SegWit),

leaving 77% of the capacity for other commerce during the settle-

ment timeframe. To compare, decentralized exchanges typically

have only dozens of active traders per day on average [5, 8], since

each trade is performed on-chain. Centralized exchanges can have

100k active traders per day [100].

With SegWit, the Bitcoin block capacity is doubled, and the

transaction fees a typically 35% smaller [3, 111] as the quadratic

hashing overhead is avoided. Thus, while our reference implemen-

tation may already be appealing to traders, it can be improved by

migrating to SegWit (legacy code still predominates the Bitcoin

ecosystem [9]). Transaction signing is also highly parallelizable, so

with more engineering effort the generation time can be reduced

by signing each input concurrently.

5 RELATEDWORK
Trusted hardware has been proposed as an effective tool for differ-

ent kinds of cryptocurrency use-cases, such as off-chain payment

channels [69], reputable data feed services [114], and a mixing ser-

vice [105]. These schemes offer better efficiency and features by

placing more trust in the hardware manufacturer: in particular, off-

chain channels and mixers can also be accomplished without secure

processors (see, e.g., [28, 57, 74, 95]). By contrast, Tesseract reduces

the amount of trust that needs to be placed in the exchange ser-

vice relative to all other real-time exchange schemes (to the best of

our knowledge). In Appendix A we provide a comparison between

Tesseract and various other cryptocurrency exchange schemes.

Trusted hardware can also be used to achieve significant ef-

ficiency gains for well-known cryptographic primitives such as

functional encryption [50], secure MPC [90], and NIZK in the pres-

ence of side-channels [104]. Pass, Shi, and Tramèr give a formal

model of trusted hardware and remote attestation [87].

Several works achieve fair exchange and secure cash distribution

via interaction with a cryptocurrency system, cf. [16, 17, 28, 66].

However, theseworks enable fair exchange (with penalties) by using

a single cryptocurrency system, while Tesseract has to provide all-

or-nothing fairness among multiple cryptocurrency systems.

Outside of academic work, a wide range of industry and commu-

nity efforts have attempted to realize various aspects of cross-chain

distributed exchange. Notable strategies include the use of payment

channels to achieve a hub-and-spoke exchange, cf. Appendix A.

Several exchanges aim at using raw atomic swaps, as in Fig-

ures 15 and 16. Per Appendix B, such use of on-chain mediation is

unsuitable for real-time trades. Further alternatives to an atomic

swap model for decentralized exchanges are explored in Appen-

dix A – e.g., the use of IOUs as the basis of an exchange platform.

A wide range of decentralized exchanges run inside a single

blockchain and let users to swap assets on that chain, using custody

in smart contracts to trustlessly hold user assets. Due to their on-

chain settlement, these exchanges are not real-time, and suffer from

several manipulation vectors across a design space explored in [40].

Acknowledgments. This work is funded in part by NSF grants

CNS-1617676, CNS-1514163, CNS-1564102, and CNS-1704615, as

well as ARO grant W911NF-16-1-0145.

REFERENCES
[1] [n.d.]. https://github.com/intel/linux-sgx/issues/161.

[2] [n.d.]. https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki.

[3] [n.d.]. https://www.buybitcoinworldwide.com/fee-calculator/.

[4] [n.d.]. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md.

[5] [n.d.]. 0x insights. https://chainactivity.io/0x-project/insights.
[6] [n.d.]. Bitcoin Glossary: Locktime. https://bitcoin.org/en/glossary/locktime.

[7] [n.d.]. BTC relay. http://btcrelay.org/.
[8] [n.d.]. Dapp Rankings. https://dappradar.com/rankings/protocol/ethereum/

category/exchanges.

[9] [n.d.]. SegWit usage. https://blockchair.com/bitcoin/charts/segwit-

usage?interval=full&granularity=week.
[10] 2019. Atomic settlement transactions (Bitcoin part). https://tbtc.bitaps.com/

261ae86bd92c5805c8dfc36b4db4992a7595af90d991d766e0483a9e89ac08e9.

[11] 2019. Atomic settlement transactions (Litecoin part). https://tltc.bitaps.com/

61915f3fa3de25cd67c210a9760ed2d06a28eaaa2d8775535b8d559bed3f4167.

[12] Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak,

and Leonid Reyzin. 2017. Beyond Hellman’s Time-Memory Trade-Offs with

Applications to Proofs of Space. In 23rd ASIACRYPT.
[13] Alexey Akhunov. [n.d.]. https://github.com/ledgerwatch/ethstate/.

[14] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

Technology for CPU Based Attestation and Sealing. In HASP’13. 1–7. https:

//doi.org/10.1.1.405.8266
[15] Gavin Andresen. [n.d.]. P2SH. https://github.com/bitcoin/bips/blob/master/

bip-0016.mediawiki.

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1532

https://github.com/intel/linux-sgx/issues/161
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://www.buybitcoinworldwide.com/fee-calculator/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://chainactivity.io/0x-project/insights
https://bitcoin.org/en/glossary/locktime
http://btcrelay.org/
https://dappradar.com/rankings/protocol/ethereum/category/exchanges
https://dappradar.com/rankings/protocol/ethereum/category/exchanges
https://blockchair.com/bitcoin/charts/segwit-usage?interval=full&granularity=week
https://blockchair.com/bitcoin/charts/segwit-usage?interval=full&granularity=week
https://tbtc.bitaps.com/261ae86bd92c5805c8dfc36b4db4992a7595af90d991d766e0483a9e89ac08e9
https://tbtc.bitaps.com/261ae86bd92c5805c8dfc36b4db4992a7595af90d991d766e0483a9e89ac08e9
https://tltc.bitaps.com/61915f3fa3de25cd67c210a9760ed2d06a28eaaa2d8775535b8d559bed3f4167
https://tltc.bitaps.com/61915f3fa3de25cd67c210a9760ed2d06a28eaaa2d8775535b8d559bed3f4167
https://github.com/ledgerwatch/eth_state/
https://doi.org/10.1.1.405.8266
https://doi.org/10.1.1.405.8266
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki

[16] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. 2014. Fair

Two-Party Computations via Bitcoin Deposits. In FC.
[17] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. 2014. Secure

Multiparty Computations on Bitcoin. In IEEE S&P.
[18] Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. [n.d.]. Betting on Block-

chain Consensus with Fantomette. https://arxiv.org/abs/1805.06786.
[19] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. 2012. On Bitcoin

and red balloons. In ACM Conference on Electronic Commerce. 56–73.
[20] Adam Back. 2013. O (280) theoretical attack on P2SH. https://bitcointalk.org/

index.php?topic=323443.0.
[21] Clare Baldwin. [n.d.]. http://www.reuters.com/article/us-bitfinex-hacked-

hongkong-idUSKCN10E0KP.

[22] Andrew Barisser. 2015. https://medium.com/on-banking/high-frequency-

trading-on-the-coinbase-exchange-f804c80f507b.

[23] Massimo Bartoletti and Livio Pompianu. 2017. An analysis of Bitcoin

OP_RETURN metadata. In FC. https://arxiv.org/abs/1702.01024.
[24] Jethro Beekman. 2014. A Denial of Service Attack against Fair Computations

using Bitcoin Deposits. https://eprint.iacr.org/2014/911.
[25] Juan Benet. [n.d.]. https://ipfs.io/.
[26] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2016. Cryptocurrencies without

Proof of Work. In Financial Cryptography Bitcoin Workshop.
[27] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.

2017. Full Technical Report, Tesseract: Real-Time Cryptocurrency Exchange

Using Trusted Hardware. https://eprint.iacr.org/2017/1153.
[28] Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. [n.d.]. Instantaneous De-

centralized Poker. In Asiacrypt 2017.
[29] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. [n.d.]. Proof of

activity: extending Bitcoin’s proof of work via proof of stake. In NetEcon 2014.
[30] Iddo Bentov, Alex Mizrahi, and Meni Rosenfeld. 2017. Decentralized Prediction

Market without Arbiters. In Financial Cryptography 4th Bitcoin Workshop.
[31] Iddo Bentov, TierNolan, et al. 2013. Atomic transfers. https://bitcointalk.org/

index.php?topic=193281.msg2224949#msg2224949.

[32] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. [n.d.]. The Security Impact

of a New Cryptographic Library. In LATINCRYPT 2012.
[33] Bitcoin developers. 2019. Segregated Witness. https://en.bitcoin.it/wiki/

SegregatedWitness.

[34] Daniel G Brown. 2011. How I wasted too long finding a concentration inequality

for sums of geometric variables. https://cs.uwaterloo.ca/browndg/negbin.pdf.
[35] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. [n.d.]. Flyclient:

Super-Light Clients for Cryptocurrencies. https://eprint.iacr.org/2019/226.
[36] CryptoAsset Market Capitalizations. [n.d.]. https://coinmarketcap.com/assets/.

[37] Clark, Bonneau, Felten, Kroll, Andrew Miller, and Narayanan. 2014. On Decen-

tralizing Prediction Markets and Order Books. InWEIS.
[38] K. Croman, C. Decker, I. Eyal, A. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,

E. Shi, E. Sirer, D. Song, and R. Wattenhofer. 2016. On Scaling Decentralized

Blockchains. In FC Bitcoin Workshop.
[39] Leslie Culbertson. [n.d.]. https://newsroom.intel.com/editorials/protecting-

our-customers-through-lifecycle-security-threats.

[40] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Ben-

tov, Lorenz Breidenbach, and Ari Juels. [n.d.]. Flash Boys 2.0: Frontrunning,

Transaction Reordering, and Consensus Instability in Decentralized Exchanges.

[41] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconfig-

urable Consensus and Applications to Provably Secure Proofs of Stake. FC.
[42] Allen Day and Colin Bookman. 2018. Bitcoin in BigQuery: blockchain ana-

lytics on public data. https://cloud.google.com/blog/products/gcp/bitcoin-in-

bigquery-blockchain-analytics-on-public-data.

[43] Christian Decker and Roger Wattenhofer. 2015. A Fast and Scalable Payment

Network with Bitcoin Duplex Micropayment Channels. In 17th SSS.
[44] Desmedt and Frankel. 1989. Threshold Cryptosystems. In CRYPTO.
[45] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The

Second-Generation Onion Router. In 13th Usenix Security.
[46] dree12 (pseudonym). [n.d.]. List of Major Bitcoin Heists, Thefts, Hacks, Scams,

and Losses. https://bitcointalk.org/index.php?topic=576337.
[47] Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure

for the Analysis of Randomized Algorithms. Cambridge Uni. Press.

[48] Tuyet Duong, Lei Fan, Thomas Veale, and Hong-Sheng Zhou. [n.d.]. Securing

Bitcoin-like Backbone Protocols against a Malicious Majority of Computing

Power. 2016 ([n. d.]). http://eprint.iacr.org/2016/716
[49] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. 2015. Proofs of Space. In CRYPTO.
[50] Ben A. Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov.

2017. Iron: Functional Encryption using Intel SGX.

[51] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. In Eurocrypt.
[52] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. 2016. Threshold-

Optimal DSA/ECDSA Signatures. In 14th ACNS.

[53] Arthur Gervais and Rami Khalil. 2018. The Liquidity Network. https://

liquidity.network/whitepaperLiquidityNetwork.pdf.
[54] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies.

In 26th Symposium on Operating Systems Principles.
[55] Sharon Goldberg, Ethan Heilman, and other. 2018. Arwen. https://

www.arwen.io/.
[56] BitFury Group. 2015. http://bitfury.com/content/5-white-papers-research/pos-

vs-pow-1.0.2.pdf.
[57] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and

Sharon Goldberg. 2017. TumbleBit. In NDSS. https://eprint.iacr.org/2016/575.
[58] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse

Attacks on Bitcoin’s Peer-to-Peer Network. In 24th Usenix Security.
[59] Maurice Herlihy. 2018. Atomic Cross-Chain Swaps. In PODC.
[60] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan

Del Cuvillo. 2013. Hasp, http://dl.acm.org/citation.cfm?doid=2487726.2488370.
[61] SP Johnson, VR Scarlata, C Rozas, E Brickell, and F Mckeen. 2016.

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-

provisioning-and-attestation-services.

[62] Keystone. [n.d.]. https://keystone-enclave.org/.
[63] Rami Khalil, Arthur Gervais, and Guillaume Felley. [n.d.]. TEX - A Securely

Scalable Trustless Exchange. https://eprint.iacr.org/2019/265.
[64] Aggelos Kiayias, Ioannis Konstantinou, Alexander Russell, Bernardo David,

and Roman Oliynykov. 2017. Ouroboros: A Provably Secure Proof-of-Stake

Blockchain Protocol. In CRYPTO.
[65] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. 2017. Non-interactive

proofs of proof-of-work. https://eprint.iacr.org/2017/963.
[66] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. 2015. Fair and Robust

Multi-Party Computation using a Global Transaction Ledger. In Eurocrypt.
[67] Sophie Knight. [n.d.]. http://www.reuters.com/article/us-bitcoin-mtgox-

wallet-idUSBREA2K05N20140321.

[68] Johnson Lau. [n.d.]. https://github.com/jl2012/bips/blob/vault/bip-

0VVV.mediawiki.

[69] Joshua Lind, Ittay Eyal, Florian Kelbert, Oded Naor, Peter R. Pietzuch, and

Emin Gün Sirer. 2018. Teechain. In 11th SYSTOR.
[70] Loi Luu and Yaron Velner. 2017. KyberNetwork White Paper. https:

//kyber.network/assets/KyberNetworkWhitepaper.pdf.
[71] mappum (pseudonym). 2015. Mercury – Fully trustless cryptocurrency exchange.

https://bitcointalk.org/index.php?topic=946174.0.
[72] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Som-

mer, Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE. http:

//eprint.iacr.org/2017/048.
[73] McCorry, Heilman, and Miller. [n.d.]. Atomically Trading with Roger: Gambling

on the success of a hardfork. http://eprint.iacr.org/2017/694.
[74] Patrick McCorry, Malte Möser, Siamak Fayyaz Shahandashti, and Feng Hao.

2016. Towards Bitcoin Payment Networks. In ACISP.
[75] McKeen, Alexandrovich, Berenzon, Rozas, Shafi, Shanbhogue, and Savagaonkar.

2013. Innovative instructions and software model for isolated execution. In

HASP.
[76] RobertMcMillan. 2013. $1.2MHack ShowsWhy You Should Never Store Bitcoins

on the Internet. https://www.wired.com/2013/11/inputs/.

[77] Danielle Meegan. [n.d.]. https://www.ethnews.com/relay-attack-leads-to-etc-

loss-on-ethereum-exchange.

[78] Andrew Miller. 2016. Provable Security for Cryptocurrencies. Ph.D. Dissertation.
University of Maryland, College Park.

[79] Tal Moran and Ilan Orlov. 2019. Rational Proofs of Space-Time. Crypto (2019).
[80] Sebastian Muller, Franziska Brecht, Benjamin Fabian, Steffen Kunz, and Dominik

Kunze. 2012. Distributed performance measurement and usability assessment

of the tor anonymization network. In Future Internet, Vol. 4(2). 488–513.
[81] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[82] Satoshi Nakamoto. 2010. https://bitcointalk.org/index.php?topic=
1786.msg22119#msg22119.

[83] Chia Network. 2018. https://chia.network/.
[84] NIST. 2018. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-90B.pdf.
[85] Sunoo Park, Krzysztof Pietrzak, Albert Kwon, Joël Alwen, Georg Fuchsbauer,

and Peter Gazi. 2015. Spacemint: A Cryptocurrency Based on Proofs of Space.

IACR Cryptology ePrint Archive 2015 (2015), 528. http://eprint.iacr.org/2015/528
[86] Rafael Pass, Lior Seeman, and abhi shelat. 2017. Analysis of the Blockchain

Protocol in Asynchronous Networks. In Eurocrypt.
[87] Rafael Pass, Elaine Shi, and Florian Tramer. 2017. Formal Abstractions for

Attested Execution Secure Processors. In Eurocrypt.
[88] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter

Wuille. 2017. Confidential Assets. In FC Bitcoin Workshop.
[89] Poon and Dryja. [n.d.]. https://lightning.network/lightning-network-

paper.pdf.
[90] Portela, Barbosa, Scerri, Warinschi, Bahmani, Brasser, and Sadeghi. 2017. Secure

Multiparty Computation from SGX. In FC.

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1533

https://arxiv.org/abs/1805.06786
https://bitcointalk.org/index.php?topic=323443.0
https://bitcointalk.org/index.php?topic=323443.0
http://www.reuters.com/article/us-bitfinex-hacked-hongkong-idUSKCN10E0KP
http://www.reuters.com/article/us-bitfinex-hacked-hongkong-idUSKCN10E0KP
https://medium.com/on-banking/high-frequency-trading-on-the-coinbase-exchange-f804c80f507b
https://medium.com/on-banking/high-frequency-trading-on-the-coinbase-exchange-f804c80f507b
https://arxiv.org/abs/1702.01024
https://eprint.iacr.org/2014/911
https://ipfs.io/
https://eprint.iacr.org/2017/1153
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://en.bitcoin.it/wiki/Segregated_Witness
https://en.bitcoin.it/wiki/Segregated_Witness
https://cs. uwaterloo. ca/browndg/negbin. pdf
https://eprint.iacr.org/2019/226
https://coinmarketcap.com/assets/
https://newsroom.intel.com/editorials/protecting-our-customers-through-lifecycle-security-threats
https://newsroom.intel.com/editorials/protecting-our-customers-through-lifecycle-security-threats
https://cloud.google.com/blog/products/gcp/bitcoin-in-bigquery-blockchain-analytics-on-public-data
https://cloud.google.com/blog/products/gcp/bitcoin-in-bigquery-blockchain-analytics-on-public-data
https://bitcointalk.org/index.php?topic=576337
http://eprint.iacr.org/2016/716
https://liquidity.network/whitepaper_Liquidity_Network.pdf
https://liquidity.network/whitepaper_Liquidity_Network.pdf
https://www.arwen.io/
https://www.arwen.io/
http://bitfury.com/content/5-white-papers-research/pos-vs-pow-1.0.2.pdf
http://bitfury.com/content/5-white-papers-research/pos-vs-pow-1.0.2.pdf
https://eprint.iacr.org/2016/575
http://dl.acm.org/citation.cfm?doid=2487726.2488370
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://keystone-enclave.org/
https://eprint.iacr.org/2019/265
https://eprint.iacr.org/2017/963
http://www.reuters.com/article/us-bitcoin-mtgox-wallet-idUSBREA2K05N20140321
http://www.reuters.com/article/us-bitcoin-mtgox-wallet-idUSBREA2K05N20140321
https://github.com/jl2012/bips/blob/vault/bip-0VVV.mediawiki
https://github.com/jl2012/bips/blob/vault/bip-0VVV.mediawiki
https://kyber.network/assets/KyberNetworkWhitepaper.pdf
https://kyber.network/assets/KyberNetworkWhitepaper.pdf
https://bitcointalk.org/index.php?topic=946174.0
http://eprint.iacr.org/2017/048
http://eprint.iacr.org/2017/048
http://eprint.iacr.org/2017/694
https://www.wired.com/2013/11/inputs/
https://www.ethnews.com/relay-attack-leads-to-etc-loss-on-ethereum-exchange
https://www.ethnews.com/relay-attack-leads-to-etc-loss-on-ethereum-exchange
https://bitcointalk.org/index.php?topic=1786.msg22119#msg22119
https://bitcointalk.org/index.php?topic=1786.msg22119#msg22119
https://chia.network/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
http://eprint.iacr.org/2015/528
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

[91] Portnoy and Eckersley. [n.d.]. https://www.eff .org/deeplinks/2017/05/intels-
management-engine-security-hazard-and-users-need-way-disable-it.

[92] profitgenerator. 2017. EtherDelta. https://steemit.com/ethereum/

@profitgenerator/etherdelta-decentralized-token-exchange.

[93] Meni Rosenfeld. 2012. Colored Coins. https://bitcoil.co.il/files/Colored%
20Coins.pdf and https://bitcoil.co.il/BitcoinX.pdf.

[94] Meni Rosenfeld. 2014. http://arxiv.org/abs/1402.2009.
[95] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2017. P2P Mixing and

Unlinkable Bitcoin Transactions. In NDSS 2017.
[96] Fabian Schuh and Daniel Larimer. [n.d.]. BitShares. https://bravenewcoin.com/

assets/Whitepapers/bitshares-financial-platform.pdf.
[97] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3. In IEEE S&P.
[98] ShapeShift. [n.d.]. https://shapeshift.io/.
[99] Spacemesh. [n.d.]. https://spacemesh.io/.
[100] Tony Spilotro. 2018. Only 4 Crypto Exchanges Have 100,000+ Active Users.

https://www.newsbtc.com/2018/12/12/crypto-exchanges-active-users/.

[101] Raoul Strackx and Frank Piessens. 2016. Ariadne: A Minimal Approach to State

Continuity. In 25th USENIX Security.
[102] Paul Sztorc. 2015. http://www.truthcoin.info/blog/bitusd/.
[103] Todd. [n.d.]. https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki.

[104] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine

Shi. 2017. Sealed-Glass Proofs. In Euro S&P.
[105] Muoi Tran, Loi Luu, Min Suk Kang, Iddo Bentov, and Prateek Saxena. 2018.

Obscuro: A Secure and Anonymous Bitcoin Mixer using SGX. In ACSAC.
[106] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdomwith Transient

Out-of-order Execution. In USENIX.
[107] Warren and Bandeali. [n.d.]. https://0xproject.com/pdfs/0xwhitepaper.pdf.
[108] Pieter Wuille et al. [n.d.]. https://bitcoincore.org/en/2017/03/23/schnorr-

signature-aggregation/.

[109] Pieter Wuille, Gregory Maxwell, et al. [n.d.]. https://github.com/bitcoin-core/

secp256k1.

[110] Xu, Cui, and Peinado. 2015. Controlled-channel attacks: Deterministic side

channels for untrusted operating systems. In IEEE S&P.
[111] Joseph Young. [n.d.]. https://www.newsbtc.com/2017/11/10/54991/.

[112] Joseph Young. 2016. https://cointelegraph.com/news/china-imposes-new-

capital-controls-bitcoin-price-optimistic.

[113] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur

Gervais, and William J. Knottenbelt. [n.d.]. XCLAIM: Trustless, Interoperable

Cryptocurrency-Backed Assets. https://eprint.iacr.org/2018/643.
[114] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town

Crier: An Authenticated Data Feed for Smart Contracts. In CCS.
[115] Fengwei Zhang and Hongwei Zhang. 2016. SoK: A Study of Using Hardware-

assisted Isolated Execution Environments for Security (HASP).
[116] ZIP143. [n.d.]. https://github.com/zcash/zips/blob/master/zip-0143.rst.

A CRYPTOCURRENCY EXCHANGES
We describe several alternative designs for a real-time cryptocur-

rency exchange, and also survey non-real-time designs. See Table 4

for a summary comparison.

A.1 Centralized Exchange
In a centralized cryptocurrency exchange, users transfer ownership

of their funds to the sole control of the exchange administrator.

This transfer of ownership (a.k.a. deposit) is done via an on-chain

transaction that may take a long time to be confirmed, according to

a confidence parameter that the exchange administrator set. Most

exchanges accept a Bitcoin transfer by waiting 1 hour on average

(6 PoW confirmations).

The business model of a centralized exchange can be described

as a “goose that lays golden eggs”. That is to say, the exchange

administrator may run away with all the funds that the users de-

posited (usually by claiming “I was hacked”), and the disincentive

to doing so is that the exchange collects a fee from each trade be-

tween the users. Most exchanges also charge a withdrawal fee, and

some exchanges collect fees even when the users place bid and ask

orders.

Still, there have been many thefts of funds from centralized

exchanges (cf. [46]). About 650,000 bitcoins were lost when the

MtGox exchange shut down in 2014 [67], and the users of the

Bitfinex exchange lost approximately 120,000 bitcoins in 2016 [21].

A.2 Exchange Based on Multisig with TTP
An exchange design under which the traders’ funds cannot be stolen

is described in [30, Appendix A]. The idea is that each trader will

deposit her assets into a script that is controlled both by her and by

a semi trusted third party (TTP). Traders will then communicate

their trades in real-time to the TTP, and the TTP is supposed to

keep honest accounting off-chain. Periodically, the traders and the

TTP will cooperate to sign the new state after all the trades that

have been made, and broadcast the result to the blockchain.

This process is highly susceptible to DoS by malicious traders

who would abort instead of signing the new state. Therefore, the

exchange may require splitting the traders into smaller factions, or

impose penalties on misbehaving traders who refuse to sign a new

state. However, such penalties would require additional collateral

from traders who wish to trade with a relatively modest amount

of funds (since a malicious trader can perform an abort attack

by sacrificing her funds), which makes the exchange service less

attractive.

As with any TTP-based scheme, this design is susceptible to

frontrunning attacks by a dishonest TTP (cf. Section 2.4).

A.3 Exchange via Off-chain Channels and TTP
In this design, each user establishes off-chain bi-directional payment

channels [43, 74, 89] with a semi-TTP server S , one channel for

each cryptocurrency that the user wishes to trade in. This produces

a hub and spoke network structure, see Figure 14 for an illustration

of BTC/LTC/ETH trading.

The traders will then communicate their bid and ask orders to

S . Whenever the orders of two traders match, they will send an

instant off-chain payment to S , and S will route the funds of one

trader to the other.

It is better for each individual to trade in small amounts, because

the TTP can always steal the most recent amount that was funneled

through S . However, this recommendation is in conflict with the

common behavior of large traders, who frequently create big bid/ask

“walls”.

In any case, even if the amount in each trade is small, the risk of

theft by a corrupt TTP remains high. This is because the aggregate

amount that all the traders funnel through S at a particular point

in time can be substantial. An example that does not involve an

exchange but demonstrates this point is the online wallet service in-

puts.io, which made it attractive for users to deposit small amounts

and then ran away with more than 4000 bitcoins [76].

Another major drawback of this approach is that the TTP has

to lock matching collateral for each off-chain payment channel of

each trader, due to nature of off-chain bi-directional channels. It is

therefore likely that the exchange service would need to impose

high fees on its users.

The Liquidity Network [53] and Arwen [55] are exchange plat-

forms that are based on off-chain channels with TTPs.

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1534

https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://steemit.com/ethereum/@profitgenerator/etherdelta-decentralized-token-exchange
https://steemit.com/ethereum/@profitgenerator/etherdelta-decentralized-token-exchange
https://bitcoil.co.il/files/Colored%20Coins.pdf
https://bitcoil.co.il/files/Colored%20Coins.pdf
https://bitcoil.co.il/BitcoinX.pdf
http://arxiv.org/abs/1402.2009
https://bravenewcoin.com/assets/Whitepapers/bitshares-financial-platform.pdf
https://bravenewcoin.com/assets/Whitepapers/bitshares-financial-platform.pdf
https://shapeshift.io/
https://spacemesh.io/
https://www.newsbtc.com/2018/12/12/crypto-exchanges-active-users/
http://www.truthcoin.info/blog/bitusd/
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://0xproject.com/pdfs/0x_white_paper.pdf
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1
https://www.newsbtc.com/2017/11/10/54991/
https://cointelegraph.com/news/china-imposes-new-capital-controls-bitcoin-price-optimistic
https://cointelegraph.com/news/china-imposes-new-capital-controls-bitcoin-price-optimistic
https://eprint.iacr.org/2018/643
https://github.com/zcash/zips/blob/master/zip-0143.rst

Bob
ETH

Bob
BTC

Carol
BTC LTC

Carol

Alice
ETH

Alice
LTC

Alice
BTC

S

Figure 14: Exchange via off-chain channels.

Table 4: Comparison of Cryptocurrency Exchanges

Trust DoS Collateral

Front-

running

Price

Discovery

Centralized yes minor no yes yes

TTP/multisig

(Appendix A.2)
minor yes from users yes yes

TTP/channels

(Appendix A.3)
semi minor from TTP yes yes

ShapeShift semi minor no yes no

Tesseract TEE minor no no yes

A.4 Non-real-time Exchanges
ShapeShift [98] is a centralized matching service that mitigates

the risks associated with a full-fledged exchange by necessitating

that each trader will deposit only a small amount of cryptocur-

rency for a short period of time. If a quick match is available then

ShapeShift will execute the trade, otherwise it will immediately

refund the cryptocurrency to the trader (i.e., via a transaction on the

blockchain). ShapeShift does not support real-time trades and price

discovery. It fetches the current prices from centralized exchanges.

Since ShapeShift is rather popular, the aggregated amount of funds

that can be stolen is likely to be substantial. In this sense, ShapeShift

does not solve the systemic risk that centralized exchanges entail.

EtherDelta [92] is a non-real-time non-cross-chain decentralized

exchange that has been operational since 2016, with quite a sig-

nificant amount of popularity—particularly for the first listings of

Initial Coin Offerings (ICO). However, EtherDelta is vulnerable to

frontrunning attacks, see [40].

BitShares [96] offers a cryptocurrency exchange that does not

rely on trusted parties. It is not real-time, but relatively fast due

to a delegated proof-of-stake consensus protocol in which blocks

are created every few seconds by central committee members (who

may engage in frontrunning attacks, see Section 2.4). Traders first

convert their cryptocurrency to IOUs in the BitShares system, and

later convert these IOUs to the native BitShares cryptocurrency

(BTS) according to an up-to-date exchange rate that is set by elected

representatives that the BitShares stakeholders voted for. See [96,

Section 2] and [102] regarding the risk of market manipulation

with this approach. The BTS cryptocurrency that traders ultimately

obtain can be exchanged for other cryptocurrencies by means that

are again external to the BitShares system — centralized exchanges

(a.k.a. gateways) are commonly used for this task.

ExchangeBased onMutualDistrust: Instead of relying on trusted
hardware, it would be possible in principle to operate an exchange

service (similar to Tesseract) as a logical server that is implemented

via multiple physical servers that are distrustful of each other.

Traders will need to send their bid/ask requests using threshold

encryption [44] in order to avoid frontrunning attacks (see Sec-

tion 2.4), and the physical servers will run a Byzantine consensus

protocol and sign the settlement transactions (cf. Section 2) with

a threshold signature scheme [52]. An honest majority among the

physical servers can guarantee protection from theft. Since the

physical servers would need to reside in different geographical lo-

cations to provide meaningful security, and since Byzantine agree-

ment with threshold decryption has to be performed for each of

the users’ orders, the latency of a mutual distrust based exchange

would probably be measured in seconds (depending on the number

of physical servers). By contrast, the responsiveness of Tesseract

can be measured in milliseconds.

B ATOMIC CROSS-CHAIN SWAPS
A secure protocol for ACCSs was given in [31]. We specify an

intuitive description of the protocol in Figure 15, demonstrating a

swap of bitcoins for litecoins as an example. The main thrust of the

protocol Πaccs is that Alice can redeem Bob’s coins only by publicly

revealing her decommitment x on a blockchain, thereby allowing

Bob to use x to redeem Alice’s coins on the other blockchain. To

avoid a race condition, Alice’s coins remain locked for s0 more time

than Bob’s coins, which should give Bob enough time to learn x
and claim Alice’s coins. The reason behind the time limits is that an

honest party should be able to gain back possession of her money in

the case that the other party aborted. We provide a proof of security

for Πaccs in Appendix C.

The first two steps of Πaccs terminate after c0 and f (c0) con-
firmations on the Bitcoin and Litecoin blockchains, so that the

transactions will become irreversible with a high enough proba-

bility. The function f (·) estimates a level of confidence for TXB’s
irreversibility that is on par with that of TXA. Per Appendix A.1, a
reasonable choice for f (·) can be, e.g., f (n) = 3n. Combined with

a sensible choice for the parameters t0, s0 (see Appendix C), Alice
and Bob will need to wait for hours (or perhaps minutes with faster

cryptocurrency systems) until the Πaccs protocol completes.

In the accompanying illustration (Figure 16), Alice trades n1 = 2

BTC for Bob’s n2 = 600 LTC. The last block of the Bitcoin block-

chain is T1, and the last block of the Litecoin blockchain is T2. The
time limit t0 is set to about two weeks into the future (i.e., 2000

more blocks in Bitcoin, and 8000 more blocks in Litecoin, as the

block creation rate is 4 times faster in Litecoin than in Bitcoin). The

extra safety time s0 is set to 100 Bitcoin blocks, which is ≈ 16 hours

on average. Note that both Bitcoin and Litecoin allow specification

of the time limit in seconds rather than blocks (since valid blocks

need to specify a timestamp that is within certain leniency bounds),

which adds convenience but not security.

Since the long confirmation time in decentralized networks

makes Πaccs slow, it is likely that the agreed upon price (in the

example, n2/n1 = 300 LTC per BTC) was decided by observing the

prices in real-time exchanges. This implies that the parties cannot

respond to price fluctuations in a fair manner: if Bob is rational then

he may cancel the trade after the first step (if the market price of

LTC went up), and if Alice is rational then she may cancel the trade

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1535

Protocol Πaccs

(1) Alice samples a random x ∈ {0, 1}λ , computes a hash commit-

ment Y = hash(x), and broadcasts a transaction TXA that spends

n1 BTC into an output script that dictates:

• Alice can gain back possession of her n1 BTC after c0 + t0 + s0
blocks.

• Bob can redeem the n1 BTC by supplying a preimage of Y and

signing with his secret key.

(2) After TXA is buried under c0 extra blocks and therefore becomes

irreversible w.h.p., Bob broadcasts a transaction TXB that spends

his n2 LTC into an output script that dictates:

• Bob can gain back possession of his n2 LTC after 4t0 blocks.
• Alice can redeem the n2 LTC by supplying a preimage of Y and

signing with her secret key.

(3) After TXB is buried under f (c0) extra blocks and therefore be-

comes irreversible w.h.p., Alice redeems the n2 LTC of Bob by

revealing x .
(4) Bob supplies x to redeem the n1 BTC of Alice.

Figure 15: Protocol for an atomic cross-chain swap.

Alice:

 if block# > T1+2100
 sigverify PKA
 else
 (sigverify PKB) AND (x: hash(x)=Y)

 amount: 2

 sigverify PKA

 amount: 2

TXA

Bitcoin:
T1Genesis

Litecoin:
T2Genesis

 Bob:

 if block# > T2+8000
 sigverify PKB
 else
 (sigverify PKA) AND (x: hash(x)=Y)

 amount: 600

 sigverify PKB

 amount: 600

TXB

Figure 16: Illustration of an atomic cross-chain swap.

after the second step (if the market price of BTC went up). Another

implication is that Πaccs by itself is not a complete trading solution,

because real-time exchanges are still needed for price discovery.

A matching service for ACCSs was established in 2015, though

it became defunct due to lack of usage [71].

C PROOF OF SECURITY FOR ACCS
Per Definition 3.1, let us prove that the all-or-nothing requirement

holds for the Πaccs protocol of Appendix B.

We use TXOUTA, TXOUTB to denote the outputs of the transac-

tions TXA, TXB, respectively. We denote by TXSA, TX
S
B the transac-

tions that spend TXOUTA and TXOUTB in steps 3 and 4 of Πaccs,

respectively.

Proposition C.1. Assume that s0 = Ω(
√
t0), and that any Bit-

coin client that wishes to submit a valid transaction will be able to
broadcast the transaction and have it included in one of the next
s0 blocks. Assume that the probability of reversing c0 Bitcoin blocks
or 4c0 Litecoin blocks is negligible. Let E0 denote the event that the
all-or-nothing property holds w.r.t. the transactions TXSA and TXSB. If
hash(·) is preimage-resistant and the signature scheme is existentially
unforgeable, then ¬E0 occurs with negligible probability.

Proof sketch. We define the following events:

• E1 = {TXA was reversed after Bob broadcasted TXB }

• E2 = {TXB was reversed after Alice revealed x }
• E3 = {Bob spent TXOUTA before Alice revealed x }
• E4 = {Alice spent both TXOUTA and TXOUTB

without forging a signature}

• EF = {The adversary forged a signature}

• EA = {TXSA was confirmed by the Bitcoin network}

• EB = {TXSB was confirmed by the Litecoin network}

It is enough to prove that Pr[¬E0 ∩ ¬EF] is negligible, because
Pr[EF] is negligible by assumption and

Pr[¬E0] = Pr[(¬E0 ∩ EF) ∪ (¬E0 ∩ ¬EF)]

≤ Pr[EF] + Pr[¬E0 ∩ ¬EF] .

Assume that EF did not occur. If Alice redeems TXOUTB then

Bob will be able to redeem TXOUTA unless either the block that

contains TXA was reversed on the Bitcoin blockchain (event E1), or
TXOUTA was spent after the c0 + t0 + s0 timeout expired (event E4).
More formally, we have EA ∩ ¬EB ∩ ¬EF ⊆ E1 ∪ E4.

Assume again that EF did not occur. If Bob redeems TXOUTA
then Alice will be able to redeem TXOUTB unless either the block

that contains TXB was reversed on the Litecoin blockchain (eventE2),
or TXOUTB never appeared on the Litecoin blockchain (event E3).
More formally, we have EB ∩ ¬EA ∩ ¬EF ⊆ E2 ∪ E3.

Therefore, we obtain

Pr[¬E0 ∩ ¬EF]

= Pr

[(
(EA ∩ ¬EB) ∪ (EB ∩ ¬EA)

)
∩ ¬EF

]
≤ Pr[EA ∩ ¬EB ∩ ¬EF]+Pr[EB ∩ ¬EA ∩ ¬EF]

≤ Pr[E1 ∪ E4] + Pr[E2 ∪ E3]

≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4] .

By assumption, Pr[E1] and Pr[E2] are negligible since c0 is large
enough. Furthermore, Pr[E3] = negl(λ) because the event E3 im-

plies that Bob computed a preimage of hash(Y).
To bound Pr[E4], we need to consider the event that the Bitcoin

chain grew by t0 + s0 blocks before the Litecoin chain grew by

4t0 blocks. If this event occurs, then Alice will be able to redeem

TXOUTA first, and still have enough time to redeem TXOUTB too.

Note that the Bitcoin network is expected to generate only t0 blocks
by the time that the Litecoin network generated 4t0 blocks.

LetZ = Z (t0+s0,
1

5
) be a random variable with negative binomial

distribution that counts the total number of blocks that both the

Bitcoin and Litecoin networks generated by the time that the Bitcoin

network generated t0 + s0 blocks, hence E[Z] = 5(t0 + s0). By using

a standard tail inequality [34, 47] for the binomial distribution
B(µ · E[Z], 1

5
) with µ , t0

t0+s0 , we obtain

Pr[E4] = Pr[Z < 5t0] = Pr[Z < µ · E[Z]]

= Pr

[
B(µ · E[Z],

1

5

) > t0 + s0

]
< e

− 1

3
(1µ −1)

2µ(t0+s0)

= e−
1

3
(s0/t0)2 ·t0 = e−

1

3
s02/t0 .

Thus, s0 = λ
√
t0 implies Pr[E4] < e−λ

2/3 = negl(λ). �

Proposition C.1 makes the assumption that clients cannot be

denied from communicating with the Bitcoin network during a

long enough time period. While DoS attack on clients has been

suggested as a possible vulnerability of Bitcoin based protocols [24],

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1536

our assumption is quite reasonable as it is far more difficult to

mount a DoS attack on a client (that can connect to the internet

from various endpoints) in comparison to a DoS attack on a server.

However, in case the Bitcoin blocks approach their full capacity

due to a high transaction volume, the client may indeed find it

difficult to incorporate the desired transaction in one of the next s0
blocks (see for example [38] regarding the scalability prospects of

Bitcoin). Still, the client should be able to include her transaction

by attaching a high enough fee and thus signal the Bitcoin miners

to prioritize the transaction.

Notice that the chain growth ratio between Litecoin and Bitcoin

(i.e., the constant 4) does not influence the proof, because the extra

s0 confirmations in TXOUTA correspond to 4s0 expected growth

that TXOUTB precludes.

Let us also note that the above proof makes the implicit suppo-

sition that the computational power that is devoted to the Bitcoin

and Litecoin networks remains constant. It is possible to generalize

Proposition C.1 by assuming that the computational power may

not fluctuate beyond a certain bound.

D DESIGN DETAILS
In additional to the high-level design description of Section 2, let

us provide more particular details here.

For each supported cryptocurrency, the size of the FIFO queue of

block headers is chosen according to a trade-off between complex-

ity and security. For instance, 8064 Bitcoin block headers would

correspond to a 2-month window (when header 8065 is added the

first header will be removed, and so on), which means that forks

that represent a period of time longer than 2 months cannot be

supported. We note that Bitcoin and Litecoin block headers are 80

bytes each, and an Ethereum block header is ≤ 512 bytes.

In cryptocurrencies such as Bitcoin and Litecoin, the time limit

of the deposit transactions (such as TXA of Figure 1) can be ex-

pressed in the output script via the CHECKLOCKTIMEVERIFY instruc-
tion [103]. Technically, SKTEEBTC can still spend the output after the

time limit (since Bitcoin transactions should be reorg safe [82, 103]),
but this is not guaranteed because the user may also spend the

output then.

With regard to the random deposit addresses that the enclave

generates, it is in fact better that a deposit address is a hash of the

public key, as this increases security and reduces the size of unspent

outputs on the public ledger. For example, a 257-bit compressed

ECDSA public key gives 128 bits of security at most, while 160-bit

hash digest of the 257-bit public key will give 160 bits of security

(if the hash function is preimage-resistant). This is done in our

implementation via P2SH [15] (P2WPK/P2WSH [68] can be used

post-SegWit). Note that there is no point in mounting a collision

attack on a scriptless address [20]. The settlement transaction will

expose the public key, but potential attacks would then have a short

timeframe until the transaction becomes irreversible. Hence, for

maximal security the enclave will generate and attest to a fresh

deposit address after each settlement.

Upcoming Bitcoin support for aggregated Schnorr signatures [108]

will enable Tesseract to attach a single signature to the settlement

transaction, instead of one signature for every input. This implies

that the settlement transaction size can be halved, which is signifi-

cant for large transactions (e.g., with 1000 traders the transaction

size will 64 kilobytes smaller). It is also likely that miners will im-

pose a considerably lower fee for a large settlement transaction

with a single aggregated signature. At the level of principle, sig-

nature aggregation is beneficial since our secure enclave design

requires Tesseract to refresh its deposit address (hashed public key)

after each settlement, and hence the aggregated signature will need

to be verified against different public keys. This is in contrast to a

simpler scheme in which the enclave would have a single deposit

address for all users at all times, where one ordinary signature for

the entire settlement transaction would be enough (if the under-

lying cryptocurrency had built-in support for spending multiple

inputs with the same signature).

In case of a forthcoming hardfork of the kind that created Ethereum

Classic or Bitcoin Cash, users can secure themselves against replay

attacks (cf. [73, Section 2.4] and [77]) by withdrawing their coins

from the Tesseract exchange. Specifically, a malicious operator of

the Tesseract server can feed the enclave blocks from the less valu-

able hardfork, then deposit and withdraw the less valuable coins,

and then replays the withdrawal transaction to obtain coins from

the account of the more valuable hardfork. For Tesseract, this at-

tack can succeed in the account model but not in the UTXO model

(as opposed to centralized exchanges where the attack may suc-

ceed in the UTXO model too), because the settlement transaction

will have the new deposit in the inputs. The mechanism of Sec-

tion 2.3 prevents this attack if the less valuable hardfork has much

less hashpower (which is presumably the case for a hardfork with

little value). Still, proper protection against hardfork replays can

be supported if the hardforks themselves have built-in chain_id
protection. Since hardfork replay attacks are well known at this

point, many cryptocurrencies already implement the protection

(Ethereum [4], ZCash [116], etc.). Our enclave’s light clients handle

this protection upon parsing the relevant deposit transactions (no

need to parse data of the entire block). The users may switch to

a new version of Tesseract with updated code that supports the

hardfork (or completely new cryptocurrencies), and which can be

deployed at a later time. Our reference demo has a preliminary

Ethereum contract with dynamic support for ERC20 tokens, hence
no switch is needed for new ERC20 tokens (users can create new

order book pairs, for a fee).

Permissionless cryptocurrencies can be based on scarce resources

other than PoW. In particular, in a proof-of-stake [18, 26, 29, 41,

48, 54, 56, 64] based cryptocurrency the scarce resources are the

coins that circulate in the system, and in a proof-of-space [12, 49,

79, 83, 85, 99] based cryptocurrency the scarce resource is storage

space. While our reference implementation of Tesseract currently

supports only PoW based cryptocurrencies, we note that blockchain

based proof-of-stake cryptocurrencies can be supported in a similar

manner. Typically, the blocks of a PoW blockchain are validated by

inspecting a hash digest, and blocks in a proof-of-stake blockchain

are validated by inspecting the UTXO set (i.e., the current unspent

outputs) and verifying digital signatures. Hence, the enclave code

can maintain the UTXO set and verify the needed signatures for the

new blocks. In fact, if the proof-of-stake protocol requires blocks

to contain a commitment to the UTXO set, then the complexity of

the enclave code will be quite minimal.

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1537

Alice
 25 BTC

Carol
1 BTC

TEE
14 BTC

TX1

Bitcoin transaction

Alice
 30 BTC

 Bob
50 BTC

 Bob
40 BTC

Carol
700 LTC

Dave
5 LTC

TX2

Litecoin transaction

Bob
 400 LTC

Carol
100 LTC

TEE
205 LTC

Ethereum transaction

TX3

Alice: +5 tBTC
 Bob: +8 tBTC, +200 tLTC
Carol: +1 tBTC
 Dave: +5 tLTC

Figure 17: Atomic issuance of tokenized coins.

E FUNGIBLE TOKENIZED COINS
The Tesseract platform also allows its users to withdraw and circu-

late tokenized coins that are pegged to some specific cryptocurrency,

with no need to trust a human element and no exposure to markets

fluctuations. Essentially, this is done by maintaining a reserve of

the pegged cryptocurrency within the TEE enclave, and employing

the all-or-nothing protocol (cf. Section 3) to ensure that the enclave

remains solvent.

Thus, for example, Carol can deposit 600 LTC to the Tesseract

exchange, trade the 600 LTC for 2 BTC, and withdraw 2 tokenized

BTC (tBTC) into the Ethereum blockchain. Then, Carol could de-

posit her 2 tBTC to any smart contract that recognizes the assets

that Tesseract issues. For instance, Carol may wish to play a trust-

free poker game in which the pot is denominated in tBTC instead

of ETH (it is impractical to play poker directly on the Bitcoin block-

chain and instead Ethereum’s stateful contracts need to utilized,

see [28]). Another example is a crowdfunding contract that raises

money denominated in both tBTC and ETH, but returns all the

funds to the investors if the target amount was not reached before

a deadline.

The issuance of tokenized coins is illustrated in Figure 17. When

a user requests to withdraw tokenized coins, the enclave will move

the coins to a reserve address, and mint the same amount of new

tokens (using ERC20 contract, see next). In the illustration:

• Alice withdraws 5 tBTC out of her 30 BTC,

• Bob trades 2 BTC in exchange for Carol’s 600 LTC,

• Bob withdraws 8 tBTC and 200 tLTC,

• Carol keeps 1 BTC and withdraws 1 tBTC,

• Dave uses all of his 5 LTC to withdraw 5 tLTC.

The enclave updates its reserve outputs (14 BTC and 205 LTC in

the illustration) by adding coin amounts that match the amounts

of tokenized coins that the users withdrew.

Unlike the native coin deposits, reserve outputs and the tok-

enized coins are not constrained by a timeout, and therefore the

tokenized coins are fungible. Any holder of tokenized coins (e.g.,

tBTC) can later deposit her tokens into the enclave (she can create

an account on the Tesseract exchange if she does not have one yet),

and receive native coins (e.g., BTC) upon doing so. The enclave

will simply discard the tokenized coins that were deposited. Hence,

the tokenized coins can circulate freely on the blockchain in which

they are issued (the Ethereum blockchain in our implementation),

without the involvement of the Tesseract exchange.

Given an all-or-nothing settlement (cf. Definition 3.1) for the

transaction that moves native coins (from the users to the reserve

output) and the transaction that mints tokenized coins, the ex-

change always remains solvent. In Figure 17 for example, if TX1
is not committed to the Bitcoin blockchain but TX3 is committed

to the Ethereum blockchain, then the eventual holders of the 14

tBTC will not be able to deposit their tokens in order to convert

them to native BTC, because the reserve output (of 14 BTC) does

not exist. Likewise, if TX3 is not committed to Ethereum but TX1
is committed to Bitcoin, then the Bitcoin holders will be damaged

(e.g., Alice will lose 5 BTC).

As described in Sections 2 and 3, the all-or-nothing settlement

should occur after an interval that is longer than the time that it

takes for the all-or-nothing protocol execution to complete (e.g.,

an interval of 24 hours can be sensible). This means that when a

user requests to withdraw tokenized coins, there will be a waiting

period (say, somewhere between 1 hour and 25 hours) before she

receives the tokens. This also implies good scalability, since all the

native coins (that are kept in reserve) are accumulated into a single

output that is updated on-chain only after a lengthy time interval.

Since the tokenized coins are issued by the Tesseract exchange

and are fungible, the holders of these tokens will be unable to con-

vert them to native coins in the case that the Tesseract platform is

destroyed. However, the full protocol (cf. [27]) is distributed and

hence less likely to fail. We note that an all-or-nothing settlement is

efficient but not essential if the exchange is run in a single enclave

without replicas, as it is possible for the enclave to wait for con-

firmation that the reserve output is increased before creating the

signed transaction that issues the new tokenized coins. However,

the distributed Π
RTExch

is useful to retain control over the reserve

output even if all but one of the enclaves are destroyed, and the

full consensus protocol (which includes the all-or-nothing settle-

ment subroutine) allows us to synchronize the replicas and ensure

solvency.

It is also possible to incorporate a timeout to the reserve outputs

that specifies that the coins will be controlled by a multi-signature

of several reputable parties if Tesseract stops updating the reserve

outputs and thus the time expiration is reached. However, this gives

an incentive to these parties to destroy the Tesseract platform and

collect the reserve coins.

For comparison, cross-chain pegged tokens can also be real-

ized via smart contracts and chain relays, as proposed by the

XCLAIM [113] framework. Like Tesseract, this approach does not

rely on a privileged group of (supposedly reputable) humans that

hold the funds in escrow. However, XCLAIM assumes the existence

of an ideal chain relay (e.g., BTC Relay [7]) that verifies and stores

all the block headers of one blockchain C1 on another blockchain

C2. The incentive structure for such a relay service is vague, since

all the full nodes of C2 need to transmit, verify, and store this data

(cf. [19]). In Ethereum, a prominent proposal to cope with these

costs is to impose a rent surcharge [13], which will in turn increase

the cost of BTC Relay. Another difference is that XCLAIM requires

one of the two blockchains to have an extensive smart contract sup-

port, whereas Tesseract only requires the blockchains to support

basic timelocked transactions.

Session 7B: Blockchain III CCS ’19, November 11–15, 2019, London, United Kingdom

1538

	Abstract
	1 Introduction
	2 The Tesseract Design
	2.1 Threat Model
	2.2 Overview of Tesseract
	2.3 Eclipse Attacks
	2.4 Secure Communication
	2.5 Double Attestation

	3 Atomic Cross-Chain Settlements
	3.1 Naive Protocols
	3.2 Theoretical Protocol
	3.3 Practical Protocol

	4 Implementation and evaluation
	4.1 Real-time trading
	4.2 All-or-nothing settlement

	5 Related Work
	References
	A Cryptocurrency Exchanges
	A.1 Centralized Exchange
	A.2 Exchange Based on Multisig with TTP
	A.3 Exchange via Off-chain Channels and TTP
	A.4 Non-real-time Exchanges

	B Atomic cross-chain swaps
	C Proof of Security for ACCS
	D Design Details
	E Fungible Tokenized Coins

