
AEP-M: Practical Anonymous E-Payment
for Mobile Devices Using ARM TrustZone

and Divisible E-Cash

Bo Yang1, Kang Yang1(B), Zhenfeng Zhang1, Yu Qin1, and Dengguo Feng1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{yangbo,yangkang,zfzhang,qin yu,feng}@tca.iscas.ac.cn
2 State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract. Electronic payment (e-payment) has been widely applied
to electronic commerce and has especially attracted a large number of
mobile users. However, current solutions often focus on protecting users’
money security without concerning the issue of users’ privacy leakage. In
this paper, we propose AEP-M, a practical anonymous e-payment scheme
specifically designed for mobile devices using TrustZone. On account of
the limited resources on mobile devices and time constraints of elec-
tronic transactions, we construct our scheme based on efficient divisible
e-cash system. Precisely, AEP-M allows users to withdraw a large coin
of value 2n at once, and then spend it in several times by dividing it
without revealing users’ identities to others, including banks and mer-
chants. Users’ payments cannot be linked either. AEP-M utilizes bit-
decomposition technique and pre-computation to further increase the
flexibility and efficiency of spending phase for mobile users. As a conse-
quence, the frequent online spending process just needs at most n expo-
nentiations on elliptic curve on mobile devices. Moreover, we elaborately
adapt AEP-M to TrustZone architecture for the sake of protecting users’
money and critical data. The methods about key derivation and sensi-
tive data management relying on a root of trust from SRAM Physical
Unclonable Function (PUF) are presented. We implement a prototype
system and evaluate AEP-M using Barreto-Naehrig (BN) curve with
128-bit security level. The security analysis and experimental results
indicate that our scheme could meet the practical requirement of mobile
users in respects of security and efficiency.

Keywords: E-Payment · Privacy · TrustZone · Divisible e-cash · PUF

1 Introduction

Depending on the development and achievements of wireless network as well as
modern mobile devices, electronic commerce (e-commerce) is benefiting more
and more people’s daily lives. As e-commerce becomes a major component of
c© Springer International Publishing Switzerland 2016
M. Bishop and A.C.A. Nascimento (Eds.): ISC 2016, LNCS 9866, pp. 130–146, 2016.
DOI: 10.1007/978-3-319-45871-7 9

AEP-M: Practical Anonymous E-Payment for Mobile Devices 131

business operations, e-payment, which builds up e-commerce, has become one of
the most critical issues for successful business and financial services. Defined as
the transfer of an electronic value of payment from a payer to a payee through
the Internet, e-payment has been already realized in different ways and applied
to mobile devices by intermediaries such as PayPal, Google Wallet, Apple Pay
and Alipay [8]. Unfortunately, with the widespread use of e-payment, users are
faced with the risk of privacy disclosure.

Although the intermediaries and online banks try the best to enhance the
security of their e-payment solutions, the privacy-preserving scheme is often
neglected or weakened in the implementation [9]. Generally, the spending pro-
cedure is associated with the authenticated identity to indicate who withdraws
digital coins from banks, so that all the user’s relevant consuming behaviors are
identified and linked. In reality, the most of current deployed e-payment solu-
tions unintentionally reveal user personal information, perhaps involving user
real identity, billing and shopping records etc., to banks, intermediaries or payees
[11]. Such sensitive information implies one’s political view, location, religion or
health condition. Statistically, mobile users account for a high proportion among
all the e-payment users [10]. Thus, the issue of information leakage is threatening
mobile e-payment users’ personal privacy.

In theory, constructing anonymous e-payment scheme is able to effectively
solve the above problem. Some anonymous protocols are the candidates here
including direct anonymous attestation (DAA) and U-Prove. Based on DAA,
Yang et al. [19] put forward LAMS for anonymous mobile shopping. However,
these protocols hardly fulfill the anonymous e-payment from the perspectives
of both anonymity and flexibility for payment. Acting as a targeted compo-
nent for e-payment, electronic cash (e-cash), introduced by Chaum [5], allows
users to withdraw digital coins from a bank and to spend them to merchants
in an anonymous way, thus perfectly emulating conventional cash transactions.
Derived from e-cash, divisible e-cash systems are proposed to address the issue
of splitting coins of large values. Depending on it, users could withdraw a large
coin of value 2n at once and spend it in several times by dividing it. In practice,
divisible e-cash makes the cash transactions more efficient and flexible. In regard
to mobile devices, the limited resources along with the strong time constraints
of electronic transactions indeed require the practical withdrawal and spending
procedures. Therefore, it is advisable to build anonymous e-payment scheme
upon efficient divisible e-cash for mobile devices.

It is commonly believed that good security and trust will ultimately
increase the use of e-payment. Nevertheless, the direct application of anonymous
e-payment scheme on mobile devices would bring potential security risks. With-
out the dedicated protection, the scheme’s executing codes and sensitive data
are easily either compromised or stolen by the malwares. In some cases, the
attacks on mobile e-payment could cause user’s great loss of property. The tech-
nique of Trusted Execution Environment (TEE) on mobile devices is able to lend
us a helping hand. Isolated from a Rich Execution Environment (REE) where
the Guest OS runs, TEE aims to protect sensitive codes execution and assets.

132 B. Yang et al.

As a prevalent example of providing TEE for embedded devices, ARM TrustZone
[1] has been used to execute security-critical services [17]. Actually, TrustZone
enables a single physical processor to execute codes in one of two possible isolated
operating worlds: the normal world (NW) for REE and the secure world (SW)
for TEE. The two worlds have independent memory address spaces and different
privileges. As a hardware-based security extension of ARM architecture, Trust-
Zone is widely supported and applied by mobile devices. But there is a fly in
the ointment that TrustZone does not definitely provide the root of trust with
inside root key for sensitive data management. To the best of our knowledge,
there is no anonymous e-payment scheme specially designed for mobile devices
using TrustZone.

1.1 Our Contribution

Based on ARM TrustZone and the divisible e-cash scheme with the best efficiency
by Canard et al. [4], we propose AEP-M, a practical anonymous e-payment
scheme for mobile devices, which enables a user to spend his digital coins securely
and efficiently while preserving his privacy. This is the first complete work to
design an efficient anonymous e-payment scheme integrated with TrustZone. We
substantially modify the original e-cash scheme for adapting it to the executing
mode of TrustZone and guaranteeing its security on mobile devices.

For device-centered design, we make following steps towards practical and
secure usage:

– the sensitive codes on the user side of AEP-M are isolated and executed in TEE
provided by TrustZone for the possibility that the guest OS is compromised;

– AEP-M utilizes some secret keys, which are derived from a root key seed
reproduced via an on-chip SRAM PUF [6], to protect users’ coins and data;

– in AEP-M, online banks could authenticate a user who holds a mobile device
with available TrustZone and a valid account-password pair.

AEP-M elaborately protects the security of the user’s passwords and coins even
if the NW of his mobile device is corrupted while the SW still keeps honest.
The pre-computation stage is carefully added into our scheme such that the
computation amounts of the frequent online spending phase for mobile users are
decreased. Furthermore, our scheme supports that one spends a coin of value v
for any 1 ≤ v ≤ 2n at once by using the bit-decomposition technique, while the
original scheme [4] cannot, where the maximum denomination of a coin is 2n.

We implement a prototype of AEP-M and evaluate its efficiency using BN
curve at the security level of 128-bit. The experimental results show that our
scheme is efficient enough for practical usage, even from the perspective of mobile
devices.

1.2 Related Work

E-Payment Scheme. Different from pre-paid cards, credit cards and electronic
checks, e-cash system does a better job to construct anonymous e-payment. After

AEP-M: Practical Anonymous E-Payment for Mobile Devices 133

Chaum first introduced e-cash [5], Camenisch et al. [2] presented the compact
e-cash system allowing users to withdraw wallets with 2n coins at once. Unfor-
tunately, its spending procedure should be done coin by coin. Afterwards, some
truly anonymous divisible e-cash systems [3] were described, but quite ineffi-
ciency. Recently, Canard et al. [4] proposed the first really efficient divisible
e-cash system by defining one global binary tree. Our scheme takes it as a refer-
ence and further increases its efficiency and security according to our architecture
of trusted mobile device.
TrustZone Technology. ARM TrustZone technology for the mobile devices can
guarantee codes integrity and data security. Relying on TrustZone, many prac-
tical mobile schemes are proposed. For instance, AdAttester [7] was presented
specially for secure mobile advertisement on a TrustZone-enabled device. To
date, TrustZone has been popularized and applied by many mainstream mobile
manufacturers, such as Apple, Samsung and Huawei, to achieve secure applica-
tions [7].

2 Preliminaries

2.1 Notation

Throughout the paper, we use the notation shown in Table 1.
Let Λ = (p,G1,G2,GT , e, g, g̃) be a description of bilinear groups which con-

sist of three (multiplicatively written) groups G1, G2 and GT of prime order p
equipped with a bilinear map e : G1 × G2 → GT , where g and g̃ is the gen-
erator of G1 and G2 respectively. In this paper, we only consider the Type-3
pairings [16].

2.2 ARM TrustZone

ARM TrustZone [1] is a hardware-based security extension technology incorpo-
rated into ARM processors. The whole system is separated into two worlds and
each world has banked registers and memory to run the domain-dedicated OS
and software. As a result, access permissions are strictly under the control of the
secure world that the normal world components cannot access the secure world
resources. As the processor only runs in one world at a time, to run in the other
world requires context switch. A secure monitor mode exists in the secure world
to control the switch and migration between the two worlds.

2.3 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) [12] are functions where the relationship
between input (or challenge) and output (or response) is decided by a physical
system. Randomness and unclonability are two significant properties of PUFs.
PUFs are able to implicitly “store” a piece of secret data. PUFs provide much
higher physical security by extracting the secret data from complex physical
systems rather than directly reading them from non-volatile memory.

134 B. Yang et al.

Table 1. Notation used in this paper

Notation Descriptions

λ Security parameter

x
$← S x chosen uniformly at random from a set S

y := x y assigned as x

x||y Concatenation of x and y

(y1, ..., yj) ← A(x1, ..., xi) A (randomized) algorithm with input (x1, ..., xi) and
output (y1, ..., yj)

1G The identity element of a group G

G
∗

G \ {1G} for a group G

Σ1 = (KeyGen, Sign,Verify) Digital signature algorithm

Σ2 = (MAC) Message authentication code

Σ3 = (Encasym,Decasym) Asymmetric (public key) encryption and decryption
algorithm

Σ4 = (Encsym,Decsym) Symmetric encryption and decryption algorithm

Strictly speaking, only equipped with a root of trust, TrustZone becomes
a real “trusted” execution environment (TEE) [22]. Because TrustZone almost
does not internally install an available root key, it loses the capability to offer a
root of trust. Employing a PUF can cover this shortage. In this paper, AEP-M
takes the secret data extracted from the PUF as a root key seed to generate
other keys. We adopt SRAM PUF [6] that leverages the relationship between an
SRAM cell’s address for the challenge and its power up value for the response.

3 System Model and Assumptions

3.1 System Model

The system model of AEP-M is composed of five kinds of entities: mobile device
D, merchant M, trusted authority T , central bank B and traditional commer-
cial bank. In practice, there could be a number of mobile devices and merchants
participating in our system. For the sake of brevity and clarity, we use D and M
to represent an individual instantiation respectively. D is equipped with ARM
processor having TrustZone extension technology. B is responsible for issuing
digital coins to legitimate (or trusted) D through Withdraw phase. B could be
a bank card organization supporting e-payment or an intermediary serving elec-
tronic transactions. In the background, several commercial banks, where users
actually deposit money, are in cooperation with B for dealing with money trans-
fers in the real world. Service or product providers play the role of M in this
interactive model. They collect digital coins from D via Spend phase and redeem
them from B via Deposit phase. Note that M verifies the digital coins of some

AEP-M: Practical Anonymous E-Payment for Mobile Devices 135

Mobile Device

Central Bank

TrustZone

Merchant

Bank A Bank B Bank C

Trusted Authority

Fig. 1. System model of AEP-M.

user without revealing user’s identity to any entities including M itself. Man-
aged by the government or the industry administration, in Identify phase T
performs revealing identity of the users who attempt to double-spend digital
coins. Figure 1 illustrates the system model for our scheme.

3.2 Assumptions and Threat Model

To simplify our design in the system model, we assume that data communi-
cations between B and traditional bank, and between B and T build on secure
transport protocols, such as TLS, which can provide confidentiality, authenticity
and integrity protection for data transmission. Also, M, D and B are able to
acquire public parameters from T in the correct way. Public Key Infrastructure
(PKI) is supposed to be already realized for authenticating B and M. As a con-
sequence, (1) D and M can accurately obtain the public key of B by verifying
its certificate; (2) D and B can accurately obtain the public key of M similarly.

Based on the assumptions, AEP-M protects against the following adversary:

– The adversary can attack the scheme itself by attempting to pretend entities,
manipulate data transmission between entities and forge data.

– The adversary can perform software-based attacks which compromise the
mobile Rich OS or existing applications running in REE. AEP-M interfaces
in REE are also available for the adversary.

– The adversary can physically access the mobile device. He can reboot the
device and gain access to data residing on persistent storage.

However, we ignore the malicious behaviors of tampering with the TrustZone
hardware or mounting side-channel attacks on PUF.

4 AEP-M Scheme for Mobile Devices

In this section, we provide the specific architecture of trusted mobile device, and
then present the key derivation and sensitive data management. Depending on

136 B. Yang et al.

Secure World (SW)

T
ru

st
Z

on
e

Is
ol

at
io

n
B

ou
nd

ar
y

U
se

r
M

od
e

K
er

ne
l M

od
e

Hardwares with ARM TrustZone Extension

SW-Driver Monitor NW-Driver

AEP-M Service

Crypto Library

API Functions

Data Handler

Key Manager

SRAM PUF

AEP-M Proxy

Software Stack Crypto Library

Command Caller

Preprocessing Engine

Mobile OS KernelTEE OS Kernel

App1 App2 Appn

Normal World (NW)

. . .App1 Trustlet Appn Trustlet. . .

Secure Memory

Logic Engine Framebuffer

Fig. 2. Architecture of trusted mobile device for AEP-M.

these, the construction of AEP-M scheme is detailed next. Finally, the security
properties of AEP-M is analyzed.

4.1 The Architecture of Trusted Mobile Device

Leveraging TrustZone and PUF technology, we design the architecture of trusted
mobile device specifically for AEP-M based on our previous work [20]. The
software-based implementation of AEP-M functionality on existing hardwares
targets at economy, flexibility and extensibility. Meanwhile, our architecture is
designed to be compatible with the conventional running model of secure appli-
cations using TrustZone. Figure 2 shows the detailed architecture with the way
components interact with each other.

AEP-M functionality in the architecture contains two components: untrusted
AEP-M Proxy in normal world (NW) and security-sensitive AEP-M Service in
secure world (SW). In reality, SW instantiates TEE, while NW implements REE.
Depending on the whitelist and integrity protection mechanism, only the trusted
codes of programs in SW could be loaded and executed. Thus, AEP-M Service
resides in a relatively secure environment isolated from other codes running in
NW. The different components from [20] are formally described as follows.

AEP-M Proxy. This is the component visible for mobile (e-payment) appli-
cations in NW. Waiting for their AEP-M service requests, the proxy handles
the parameters and preprocesses them. Preprocessing Engine executes pre-
computation for AEP-M after digital coins are withdrawn from central bank to
the mobile device.

AEP-M Service. This is the core component to perform AEP-M critical com-
putations and operations. The execution of the component codes is under the well
protection of TrustZone isolation mechanism. Framebuffer stores the image of
confirmation message (e.g., the identity of merchant to be paid) to be securely

AEP-M: Practical Anonymous E-Payment for Mobile Devices 137

displayed for the user. Different from the general frame buffer in NW, Frame-
buffer is devoted to the reliable graphical user interface (GUI) for SW.

Application and Application Trustlet. The corresponding application
should be launched if the user wants to enjoy e-payment service. For upper-
level interaction, the application released by B consists of two parts: App for
NW and App Trustlet for SW. App provides the general GUI and basic func-
tions, while App Trustlet is securely loaded by SW and trusted for processing
security-sensitive user inputs and data operations.

Components in Hardwares. Protected by TrustZone mechanism, SRAM PUF
component and Secure Memory component are only accessible for SW. Secure
Memory contributes to temporally saving sensitive data.

4.2 Key Derivation and Sensitive Data Management

Prior to describing the concrete construction of our AEP-M scheme, we show how
to derive various keys for different purposes using the root key seed extracted
from SRAM PUF and how to utilize the derived keys to protect sensitive data.

Root Key Seed Extraction. We use the technique of SRAM PUF in [22] to
extract the secret root key seed, which is a unique bit string picked randomly
by the OEM who “stores” it in D through the physical features of one SRAM
inside D. From SRAM PUF component, seed is only reproduced and securely
cached by Key Manager when D starts up every time in normal use.

Key Derivation. Key Manager has the deterministic key derivation function
KDF: ˜S × {0, 1}∗ → ˜K, where ˜S is the key seed space, and ˜K is the derived key
space. Using the KDF, the device key pair and the storage root key is derived
as (dsk, dpk) ← KDFseed("identity") and srk ← KDFseed("storage root")
respectively. The unique device key pair is analogous to the endorsement key
defined in trusted computing but supports encryption and decryption. The stor-
age root key srk is used for generating specific storage keys to preserve sensitive
data. The hierarchical structure of storage keys enhances the security for key
usage. Note that all the derived keys are never stored permanently. Instead,
they are regained via KDF with seed at the same way when needed.

Sensitive Data Management. We can utilize the storage keys derived from
the storage root key srk to seal the AEP-M’s public parameters params, D’s
digital coin σ, the secret key m, and other related variables CT and δ. What
these variables represent will be explained in Sect. 4.3. The sealed results of these
data are stored in the insecure positions of D.

– Protect integrity for params: mkparams ← KDFsrk("storage key"||"MAC"||
params), and blobparams ← Data Seal("MAC",mkparams, params), where

blobparams := params||MAC(mkparams, params).

138 B. Yang et al.

– Protect integrity for σ: mkσ ← KDFsrk("storage key"||"MAC"||σ), and
blobσ ← Data Seal("MAC",mkσ, σ), where

blobσ := σ||MAC(mkσ, σ).

– Protect both confidentiality and integrity for m, CT and δ with the aid
of U : (skm,mkm) ← KDFsrk("storage key"||"Enc+MAC"||U), and blobm ←
Data Seal("Enc+MAC", skm,mkm,m||CT ||δ, U), where

blobm := Encsym(skm,m||CT ||δ)||U ||MAC(mkm,Encsym(skm,m||CT ||δ)||U).

Data Handler can use Data Unseal() to recover and verify the sensitive data from
blobs with the related keys regained by Key Manager.

4.3 The Details of AEP-M Scheme

0

φ

1

00

... ...

01

010 011

... ...

Fig. 3. Public global tree for all
coins.

Following the divisible e-cash scheme [4], a
unique and public global tree of depth n is used
for all coins of value V = 2n as illustrated in
Fig. 3. So each leaf denotes the smallest unit of
value to spend. We define Sn as the set of bit
strings of size smaller than or equal to n and Fn

as the set of bit strings of size exactly n. Thus,
each node of the tree refers to an element s ∈ Sn,
the root to the empty string φ, and each leaf to
an element f ∈ Fn. For any node s ∈ Sn, Fn(s)
= {f ∈ Fn|s is a prefix of f} contains all the
leaves in the subtree below s.

Assume, before leaving the factory, D is initialized by the OEM in SW to
generate the unique device key (dsk, dpk) which could uniquely identify D. Then,
the OEM issues a certificate certD w.r.t. the public key dpk to indicate the OEM’s
recognition for D. The certificate certD also contains some D’s configuration
information (e.g., whether TrustZone is available).

AEP-M scheme consists of six phases: Setup, KeyGen, Withdraw, Spend,
Deposit and Identify. First of all, Setup is executed to create the public parame-
ters by T . After that, B and M can execute KeyGen to generate their public-
private key pairs according to the public parameters. Then, other phases are
enabled to be executed according to requirements. The phases of the scheme are
presented in detail as follows.

Setup. In this phase, the trusted authority T creates the public parameters.
Given a security parameter λ, T picks the suitable bilinear groups parameters
Λ := (p,G1,G2,GT , e, g, g̃) described in Sect. 2.1 such that |p| ≥ 2λ. And
then, according to the global tree, T generates (1) rs

$← Zp and gs := grs for

each s ∈ Sn, and (2) lf
$← Zp and g̃s �→f := g̃lf/rs for each s ∈ Sn and each

f ∈ Fn(s). T keeps sck = {rs|s ∈ Sn} as its secret keys to be used in Identify

AEP-M: Practical Anonymous E-Payment for Mobile Devices 139

phase. Also, T determines a series of algorithms Ψ including the algorithms
covering from Σ1 to Σ4 in Table 1, and four independent collision-resistant
hash functions:

H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → Zp, H3 : {0, 1}∗ → {0, 1}2λ, H4 : {0, 1}∗ → {0, 1}2λ.

Finally, T sets (Λ, n, Ψ, {rs|s ∈ Sn}, {g̃s �→f |s ∈ Sn ∧ f ∈ Fn(s)}) as the pub-
lic parameters, where D and
M only need to know params := (Λ, n, Ψ, {rs|s ∈ Sn}), while B requires
params′ := (Λ, n, Ψ, {rs|s ∈ Sn}, {g̃s �→f |s ∈ Sn ∧ f ∈ Fn(s)}). After obtain-
ing params, D calls Data Seal() to seal it and stores the output blobparams.

KeyGen. This phase initializes the public-private key pair for the central bank
B and a merchant M.
– Key Generation for Central Bank. First, given params′ as input, B picks

x, y
$← Z

∗
p, and computes X := g̃x and Y := g̃y. B sets (x, y) as the

private key skB and publishes (X,Y) as the public key pkB. Second, B
uses KeyGen() in Σ1 to generate key pair for establishing sessions with D:
(skB, pkB) ← KeyGen(1λ), where skB is the private key.

– Key Generation for Merchant. Similarly, M uses KeyGen() to generate key
pair for establishing sessions with D: (skM, pkM) ← KeyGen(1λ).

Accordingly, D could get the correct pkB and pkM from B and M via veri-
fying their certificates. And likewise, M and B could acquire the correct pkB
and pkM respectively as well as T obtains pkB.

Withdraw. In this phase, a user with mobile device D could withdraw some
digital coins from the central bank B as follows.
1. The user operates App in NW of D to prepare for withdrawing some

digital coins. D switches into SW and chooses a nonce nD
$← {0, 1}λ. nD

is saved in Secure Memory and delivered to AEP-M Proxy that sends nD,
D’s dpk with its certificate certD to B.

2. B checks whether dpk is valid with certD and checks the configuration
information on certD. If the check is passed, B chooses a nonce nB

$←
{0, 1}λ, a key kmac

$← {0, 1}λ for MAC and a key kenc
$← {0, 1}λ for Encsym

and Decsym. Then, B encrypts nB, kmac and kenc using dpk to get a cipher
text CB ← Encasym(dpk, nB||kmac||kenc) and signs dpk, nD and CB using
skB to output a signature α ← Sign(skB, dpk||nD||CB). Finally, B sends a
commitment request commreq := (CB, α) to D.

3. AEP-M Proxy invokes AEP-M Service with input commreq. In SW, App
Trustlet waits for the user to input his bank account accountD, the cor-
responding password pwd and the amount of digital coins to withdraw.
For simplicity, we only describe how to withdraw one coin. The With-
draw phase could be easily extended to support withdrawing multiple
coins at once. After the user finishes inputting, Logic Engine calls the
API AEPM SW Withdraw() to generate a commitment response:

commres ← AEPM SW Withdraw(blobparams, nD, pkB, commreq, accountD, pwd),

where the API is executed as follows:

140 B. Yang et al.

(1) Unseal the blob blobparams to get params by calling Data Unseal().
(2) Verify α using pkB: res ← Verify(pkB, dpk||nD||CB, α). If res = false,

commres := ⊥ and return.
(3) Decrypt CB using dsk: (n′

B, kmac, kenc) ← Decasym(dsk, CB).

(4) Choose m
$← Z

∗
p as the secret key for a coin, and compute the com-

mitment U := gm.
(5) Set δ := V where δ denotes the current balance of the coin.
(6) Set CT as a string of 2n+1 − 1 bits where each bit is 1. CT denotes

the current tree structure of the unspent coin.
(7) Call Data Seal() to seal m, CT and δ, and generate blobm(see

Sect. 4.2).
(8) Choose a random number rD

$← Z
∗
p and compute RD := grD .

(9) Compute cD := H1(g||U ||RD||CB||α||n′
B).

(10) Compute sD := rD + cD · m (mod p).
(11) Generate a cipher context CD ← Encsym(kenc, accountD||pwd).
(12) Generate τD ← MAC(kmac, U ||n′

B||cD||sD||CD), and output
commres := (τD, U, n′

B, cD, sD, CD).

AEP-M Service saves n′
B and kmac in Secure Memory as well as stores

blobm in non-volatile storage. Then D switches back to NW and sends
commres to B.

4. On input commres, B runs the following algorithm to generate a digital
coin σ on m for D:

(σ, τB) ← Gen DC(commres, params′, kmac, kenc, nB, skB).

The algorithm has seven steps:
(1) Verify τD = MAC(kmac, U ||n′

B||cD||sD||CD), and check whether n′
B =

nB.
(2) Check whether U has not been used before by querying the database.
(3) Compute R′

D := gsD · U−cD and c′
D := H1(g||U ||R′

D||CB||α||nB).
(4) Check whether c′

D = cD.
(5) Decrypt CD using Decsym and kenc: accountD||pwd ← Decsym

(kenc, CD), then check the plaintext’s validness via communicating
with the related commercial bank. If the account balance is enough,
deduct money from the account and temporarily save it in B.

(6) Choose a random number a
$← Z

∗
p, compute A := ga, B := Ay,

C := gax · Uaxy and D := Uay, and generate σ := (A,B,C,D).
(7) Generate τB ← MAC(kmac, σ||nD||nB).

In the above algorithm, if any check is failed, B aborts the process. If not,
B sends (σ, τB) to D, and sends (U, dpk, IDbank, IDuser) to T to backup for
detecting possible double-spender. IDbank is the identity of the commercial
bank which the user account belongs to, and IDuser is the identity of the
user.

5. Upon receiving (σ, τB), D switches into SW and verifies τB using MAC,
kmac and n′

B. Then, Data Handler calls Data Seal() to seal σ and generates
blobσ. Finally, Logic Engine deletes nD, n′

B and kmac from Secure Memory.

AEP-M: Practical Anonymous E-Payment for Mobile Devices 141

Pre-Compute. After the above step, D returns back to NW. AEP-M Proxy
executes pre-computation in the background (off-line) to prepare for the
following Spend phase. Preprocessing Engine calls AEPM NW PreCmpt() to
generate a blinded coin:

(l, R, S, T,W) ← AEPM NW PreCmpt(blobparams, blobσ),

where the algorithm consists of the following steps.
(1) Get params and digital coin σ by directly reading the plaintext part of

blobparams and blobσ respectively.
(2) Parse σ as (A,B,C,D).
(3) Choose l

$← Z
∗
p and compute (R,S, T,W) := (Al, Bl, Cl,Dl).

(4) Output (l, R, S, T,W).
Preprocessing Engine stores (l, R, S, T,W) together with blobσ.

Spend. This is an interactive phase executed between a user with his mobile
device D and a merchant M, which enables D to anonymously pay some
digital coins to M.
1. App of D sends a nonce n̄D

$← {0, 1}λ to the merchant M for initiating
a transaction.

2. Receiving n̄′
D, M chooses a nonce nM

$← {0, 1}λ and gen-
erates a signature β ← Sign(skM, "Spend"||info) where info :=
(v, date, trans, pkM, n̄′

D, nM). info is the string collection containing the
amount value v of coins to pay, transaction date, other necessary transac-
tion information and the related nonce values. M sends (info, certM, β) to
D. In fact, issued by CA, certM is M’s certificate, containing IDM, pkM
and the signature SignCA(IDM||pkM), where IDM indicates the identitiy
of M.

3. When D receives the above data, AEP-M Proxy assembles the command
to request AEP-M Service for payment. Without loss of generality, we
assume that the user has a coin of value δ such that δ ≥ v. For the case
that δ < v, the user could spend another several coins in the same way in
order that the sum amounts value of all coins equals v. On account of the
request, D’s environment is switched into SW. First, Logic Engine veri-
fies β using Verify and pkM with certM. Then, D enters the secure GUI
after authenticating the user’s inputted PIN (or fingerprint). Relying on
Framebuffer, the secure GUI displays IDM and the content of v, date and
trans. It is important for the user to confirm the exact IDM and transac-
tion information in case an adversary falsifies the transaction. When the
user presses the button of “OK”, Logic Engine calls AEPM SW Spend()
to create a master serial number Z of value v of coins together with a
proof π of its validity, using the related pre-computation result as:

(Z , π) ← AEPM SW Spend(blobparams, blobm, blobσ||(l, R, S, T,W), info),

where the detailed process is presented as follows:
(1) Unseal the blobs to get params, (m, CT , δ) and (A,B,C,D) by

calling Data Unseal().

142 B. Yang et al.

(2) Check whether n̄′
D = n̄D.

(3) Represent v by bits: v = bnbn−1...b0 and set Φ := {i| 0 ≤ i ≤ n∧
bi = 1}.

(4) For each i ∈ Φ from n to 0, based on CT , select uniformly at random
an unspent node si ∈ Sn of level n − i in the tree, and then mark it
as the spent one.

(5) For each chosen node si, compute tsi
:= gm

si
, and form three sets: s :=

{si|i ∈ Φ}, gs := {gsi
|i ∈ Φ} and ts := {tsi

|i ∈ Φ}. Set Z := (s, ts).
(6) Choose a random number r̄

$← Z
∗
p, compute Li := gr̄

si
for each i ∈ Φ,

form a set L := {Li|i ∈ Φ} and compute L := Bl·r.
(7) Compute c̄ := H2(gs ||ts ||R||S||T ||W ||L||L||info).
(8) Compute z̄ := r̄ + c̄ · m (mod p).
(9) Set π := (R,S, T,W, c̄, z̄).

(10) Delete (l, R, S, T,W) from the non-volatile storage.
(11) Update CT and δ := δ − v. If δ > 0, call Data Seal() again to regen-

erate blobm using the updated CT and δ, else delete blobm and blobσ.
After the API finally returns, D switches back into NW and sends (Z , π)
to M.

4. M sets Tr := (info,Z , π) and verifies Tr by the means of calling the
specialized verification algorithm Tr Verify() as:

res ← Tr Verify(params, pkB,Tr),

where the algorithm runs in detail as follows:
(1) Parse Tr as (info,Z = (s, ts), π = (R,S, T,W, c̄, z̄)).
(2) For any two nodes in s, check that the one does not belong to the

subtree rooted at the other one (i.e., each node is not a prefix of any
other one).

(3) Compute L
′

:= S z̄ · W−c̄, L′
i := gz̄

si
· t−c̄

si
for each si ∈ s, and set

L′ := {L′
i|i ∈ Φ}.

(4) Compute c̄′ := H2(gs ||ts ||R||S||T ||W ||L′||L′||info).
(5) Check whether the relations R 	= 1, W 	= 1, e(R, Y) = e(S, g̃),

e(T, g̃) = e(R · W,X) and c̄′ = c̄ hold.
(6) If all the above checks are passed, then res := true, else res := false.
According to the verification result res, M decides whether to accept the
payment from D and provide services or goods for the user. If M accepts
the transaction, he sends D a receipt θM ← Sign(skM, "receipt"||Tr) as
the proof of accepting digital coins.

Pre-Compute. After Step 3 above, AEP-M Proxy of D in NW exe-
cutes pre-computation again in the background to generate a new tuple
(l′, R′, S′, T ′,W ′) w.r.t. some blobσ, if exists, for the next Spend use.

Deposit. In this phase, M could deposit money from Tr to his preferable bank
accountM through the central bank B.
1. M generates a signature γ ← Sign(skM, "Deposit"||Tr||accountM). Then

he sends Tr, accountM and γ together with certM to B.

AEP-M: Practical Anonymous E-Payment for Mobile Devices 143

2. B first verifies γ using Verify and certM. Secondly, B retrieves pkM from
info and checks whether it is the same one inside certM. Thirdly, B com-
putes H3(Tr) and queries database DBTr to check whether Tr has been
used before. If not, B runs the verification algorithm Tr Verify() to verify
the validity of Tr. If it is valid, B immediately transfers the exact amount
v of real money to accountM with the help of some commercial bank.

3. B detects double-spending off-line after the above step. The detection
process is presented as follows:
(1) Retrieve s and ts from Tr, and load params′.
(2) For each tsi

∈ ts and each f ∈ Fn(si), compute dsi �→f := e(tsi
, g̃si �→f)

and dsi,f := H4(dsi �→f).
(3) Set d := {dsi,f |si ∈ s ∧ f ∈ Fn(si)}.
(4) Insert the item (H3(Tr),Tr,d) into DBTr.
(5) For each dsi,f , query DBTr to check whether there exists a transaction

Tr′ that has the same dsi,f . If exists, send both Tr and Tr′ to T through
the secure channel for revealing the identity of the double-spender.

Identify. This phase endows T with the ability to reveal the identity of some
double-spender.
1. When T receives the double-spending report (Tr,Tr′) from B, it executes

the verification algorithm Tr Verify() to verify the validity of Tr and Tr′.
If both valid, T chooses one node si ∈ s from data of Tr and finds out
the related rsi

from its secret coin keys sck to recover U by computing
U := t

1/rsi
si (i.e. gm). Likewise, B recovers U ′ from Tr′.

2. If U = U ′, it indicates that Tr and Tr′ lead to a double-spending.
T would publish the spender’s information (Tr,Tr′, U, dpk, IDbank, IDuser).
Then, some possible penalties on the user IDuser, for example deducting
money from the user’s account or temporally prohibiting the user from
using e-payment system, would be triggered.

4.4 Optional Defense Mechanisms and Security Analysis

AEP-M satisfies the desired security properties such as unlinkability, traceability,
exculpability, confidentiality and authenticity. Additional defense mechanisms
could further enhance our scheme’s security. The detailed description of these
properties, mechanisms and the analysis can be found in the full paper [21].

5 Implementation and Evaluation

In this section, we first present the prototype of AEP-M from both aspects
of hardware and software. Afterwards, we show the efficiency of the proposed
scheme. Finally, we give the performance evaluation and analysis based on our
prototype system.

144 B. Yang et al.

5.1 Implementation

Hardware Platform. To simulate real environment, we implement the role of
merchant on one PC platform, and central bank as well as trusted authority
on another one. For simulating mobile device, we leverage a development board
Zynq-7000 AP Soc Evaluation Kit [18] to implement functions of AEP-M. It is
TrustZone-enabled and equipped with ARM Cortex-A9 MPCore, 1 GB DDR3
memory and On-Chip Memory (OCM) module. We utilize an SRAM chip that
is the type IS61LV6416-10TL [15] to act as our SRAM PUF. The processor can
fetch the SRAM data in the RAM cache via the bus. In addition, the methods
given in [13] are applied to fulfill Framebuffer for secure display.

Software Implementation. The software implementation on the development
board for mobile device is divided into two parts. In secure world, we use Open
Virtualization SierraTEE as the basic TEE OS which is compliant with GP’s
TEE Specifications [14]. For Crypto Library, we use OpenSSL-1.0.2 g for general
cryptographic algorithms, and Pairing-Based Cryptography (PBC) 0.5.14 library
for computations of elliptic curves and bilinear maps. The security parameter λ
is set to 128 (bits), so we choose SHA256 for H3 and H4, HMAC-SHA256 for
MAC, 3072-bit RSA for Encasym − Decasym, 256-bit ECDSA for Sign-Verify and
128-bit AES-CBC for Encsym − Decsym. 5268 lines of code (LOC) in C language
totally make up our components and auxiliary functions in secure world. In
normal world, we run a Linux as REE OS with kernel 3.8.6. AEP-M Proxy
totally comprises 2879 LOC. Besides we program one test application that could
execute upon AEP-M scheme. It contains 1268 LOC for App running in NW
and 661 LOC for App Trustlet in SW. Furthermore, there are several tens of
thousands of LOC for other entities.

5.2 Efficiency and Performance Evaluation

The specific analysis of AEP-M’s efficiency also appears in the full paper [21].
Since the resource-constrained mobile device is the performance bottleneck as
well as the focus of our attention, we measure the performance of AEP-M on
the prototype system revolving around mobile device. We select BN curve with
embedding degree 12. For testing the security level of 128-bit, we conduct the
experiments using BN256. Each average experimental result is taken over 50
test-runs.

For coins of value 210 and 220 respectively, and spending 287 of them, Fig. 4
illustrates the average time overheads of critical processes including the compu-
tations of Withdraw, Pre-Compute and Spend on mobile device for user side
and Spend on PC for merchant side. The results show that the frequent compu-
tations about either Pre-Compute or Spend only take less than 450 milliseconds
(ms), while infrequent and time-consuming Withdraw spends less than 660 ms.
Moreover, the time overhead is indeed low on PC platform.

Figure 5 shows the average time overheads of Spend phase on mobile device
for user side using n = 10 and different v. |Φ| takes corresponding values from
v’s representations by bits. We can see that as the value of |Φ| increases, the time

AEP-M: Practical Anonymous E-Payment for Mobile Devices 145

0

100

200

300

400

500

600

700

Withdraw Pre-Compute Spend Spend ()

T
im

e
O

ve
rh

ea
d

(m
s)

n = 10 n = 20

Fig. 4. Time overheads of the critical
processes for coins of 2n and v = 287.

0

100

200

300

400

500

T
im

e
O

ve
rh

ea
d

(m
s)

v=122
|Φ|=5

v=287
|Φ|=6

v=512
|Φ|=1

v=683
|Φ|=6

v=1023
|Φ|=10

v=736
|Φ|=4

Fig. 5. Time overheads of Spend phase
for n = 10 with different values of v.

overheads of Spend have evident growth, which nearly has nothing to do with v
itself, big or small. Encouragingly, under the worst-case scenario where |Φ| = 10,
the resulting overhead spends less than 500 ms, which is completely acceptable
for a mobile user. According to our efficiency analysis and experimental results,
AEP-M can be considered as a reasonably efficient scheme for mobile device.

6 Conclusion

In this paper, we propose AEP-M, a complete and practical anonymous
e-payment scheme using TrustZone and divisible e-cash. AEP-M tackles both
security and privacy issues specially for mobile electronic payers. The scheme
allows users to withdraw a coin of value 2n and spend it in several times by
dividing it. Pre-computation and the bit-decomposition technique for coin’s rep-
resentation are carefully taken into our consideration to raise scheme’s efficiency
and flexibility. What is more, TrustZone provides data and execution protection
for AEP-M. Our implementation and evaluation convince that AEP-M is quite
practical for payers using resource-constrained mobile devices.

Acknowledgment. This work was supported in part by grants from the National
Natural Science Foundation of China (No. 91118006 and No. 61402455).

References

1. Limited ARM: ARM security technology-building a secure system using TrustZone
technology, April 2009

2. Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

3. Canard, S., Gouget, A.: Divisible e-cash systems can be truly anonymous. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 482–497. Springer, Heidelberg
(2007)

146 B. Yang et al.

4. Canard, S., Pointcheval, D., Sanders, O., Traoré, J.: Divisible e-cash made practi-
cal. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 77–100. Springer, Heidelberg
(2015)

5. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer,
New York (1983)

6. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2007. LNCS, vol. 4727, pp. 63–80.
Springer, Heidelberg (2007)

7. Li, W., Li, H., Chen, H., Xia, Y.: AdAttester: secure online mobile advertisement
attestation using TrustZone. In: Proceedings of MobiSys 2015, pp. 75–88. ACM
(2015)

8. Lim, A.S.: Inter-consortia battles in mobile payments standardisation. Electron.
Commer. Res. Appl. 7(2), 202–213 (2008)

9. Preibusch, S., Peetz, T., Acar, G., Berendt, B.: Purchase details leaked to PayPal
(short paper). In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp.
217–226. Springer, Heidelberg (2015)

10. Reaves, B., Scaife, N., Bates, A., Traynor, P., Butler, K.R.B.: Mo(bile) money,
mo(bile) problems: analysis of branchless banking applications in the developing
world. In: Proceedings of the 24th USENIX Conference on Security Symposium
(2015)

11. Rial, A.: Privacy-preserving e-commerce protocols. Ph.D. thesis, Faculty of Engi-
neering Science, KU Leuven, March 2013

12. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: 44th ACM/IEEE DAC 2007, pp. 9–14 (2007)

13. Sun, H., Sun, K., Wang, Y., Jing, J.: Trust OTP: transforming smartphones into
secure one-time password tokens. In: Proceedings of CCS 2015, pp. 976–988. ACM
(2015)

14. GlobalPlatform: Tee client API specification version 1.0 (2010)
15. Integrated Silicon Solution Inc, IS61LV6416-10TL. http://www.alldatasheet.com/

datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
16. ISO/IEC: 15946–5: 2009 Information Technology-Security Techniques: Crypto-

graphic Techniques based on Elliptic Curves: Part 5: Elliptic Curve Generation
(2009)

17. Proxama (2015). http://www.proxama.com/platform/. Accessed 15 Oct 2015
18. Xilinx: Zynq-7000 all programmable soc zc702 evaluation kit. http://www.xilinx.

com/products/boards-and-kits/EK-Z7-ZC702-G.htm
19. Yang, B., Feng, D., Qin, Y.: A lightweight anonymous mobile shopping scheme

based on DAA for trusted mobile platform. In: IEEE TrustCom 2014, pp. 9–17.
IEEE (2014)

20. Yang, B., Yang, K., Qin, Y., Zhang, Z., Feng, D.: DAA-TZ: an efficient DAA scheme
for mobile devices using ARM TrustZone. In: Conti, M., Schunter, M., Askoxylakis,
I. (eds.) TRUST 2015. LNCS, vol. 9229, pp. 209–227. Springer, Heidelberg (2015)

21. Yang, B., Yang, K., Zhang, Z., Qin, Y., Feng, D.: AEP-M: practical anonymous
e-payment for mobile devices using ARM Trust Zone and divisible e-cash (full
version). ePrint (2016)

22. Zhao, S., Zhang, Q., Hu, G., Qin, Y., Feng, D.: Providing root of trust for ARM
trust zone using on-chip SRAM. In: Proceedings of TrustED 2014, pp. 25–36. ACM
(2014)

http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
http://www.proxama.com/platform/
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

	AEP-M: Practical Anonymous E-Payment for Mobile Devices Using ARM TrustZone and Divisible E-Cash
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 ARM TrustZone
	2.3 Physical Unclonable Functions

	3 System Model and Assumptions
	3.1 System Model
	3.2 Assumptions and Threat Model

	4 AEP-M Scheme for Mobile Devices
	4.1 The Architecture of Trusted Mobile Device
	4.2 Key Derivation and Sensitive Data Management
	4.3 The Details of AEP-M Scheme
	4.4 Optional Defense Mechanisms and Security Analysis

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Efficiency and Performance Evaluation

	6 Conclusion
	References

